A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

Related tags

Deep LearningTCV-X21
Overview

TCV-X21 validation for divertor turbulence simulations

Quick links

arXiv PDF

Binder DOI

Dataset licence Software licence

Test Python package codecov

Intro

Welcome to TCV-X21. We're glad you've found us!

This repository is designed to let you perform the analysis presented in Oliveira and Body et. al., Nuclear Fusion, 2021, both using the data given in the paper, and with a turbulence simulation of your own. We hope that, by providing the analysis, the TCV-X21 case can be used as a standard validation and bench-marking case for turbulence simulations of the divertor in fusion experiments. The repository allows you to scrutinise and suggest improvements to the analysis (there's always room for improvement), to directly interact with and explore the data in greater depth than is possible in a paper, and — we hope — use this case to test a simulation of your own.

To use this repository, you'll need to either use the mybinder.org link below OR user rights on a computer with Python-3, conda and git-lfs pre-installed.

Video tutorial

This quick tutorial shows you how to navigate the repository and use some of the functionality of the library.

Video_tutorial.mp4

What can you find in this repository

  • 1.experimental_data: data from the TCV experimental campaign, in NetCDF, MATLAB and IMAS formats, as well as information about the reference scenario, and the reference magnetic geometry (in .eqdsk, IMAS and PARALLAX-nc formats)
  • 2.simulation_data: data from simulations of the TCV-X21 case, in NetCDF format, as well as raw data files and conversion routines
  • 3.results: high resolution PNGs and LaTeX-ready tables for a paper
  • tcvx21: a Python library of software, which includes
    • record_c: a class to interface with NetCDF/HDF5 formatted data files
    • observable_c: a class to interact with and plot observables
    • file_io: tools to interact with MATLAB and JSON files
    • quant_validation: routines to perform the quantitative validation
    • analysis: statistics, curve-fitting, bootstrap algorithms, contour finding
    • units_m.py: setting up pint-based unit-aware analysis (it's difficult to overstate how cool this library is)
    • grillix_post: a set of routines used for post-processing GRILLIX simulation data, which might help if you're trying to post-process your own simulation. You can see a worked example in simulation_postprocessing.ipynb
  • notebooks: Jupyter notebooks, which allow us to provide code with outputs and comments together
    • simulation_setup.ipynb: what you might need to set up a simulation to test
    • simulation_postprocessing.ipynb: how to post-process the data
    • data_exploration.ipynb: some examples to get you started exploring the data
    • bulk_process.ipynb: runs over every observable to make the results — which you'll need to do if you're writing a paper from the results
  • tests: tests to make sure that we haven't broken anything in the analysis routines
  • README.md: this file, which helps you to get the software up and running, and to explain where you can find everything you need. It also provides the details of the licencing (below). There's more specific README.md files in several of the subfolders.

and lots more files. If you're not a developer, you can safely ignore these.

What can't you find in this repository

Due to licencing issues, the source code of the simulations is not provided. Sorry!

Also, the raw simulations are not provided here due to space limitations (some runs have more than a terabyte of data), but they are all backed up on archive servers. If you'd like to access the raw data, get in contact.

License and attribution notice

The TCV-X21 datasets are licenced under a Creative Commons Attribution 4.0 license, given in LICENCE. The source code of the analysis routines and Python library is licenced under a MIT license, given in tcvx21/LICENCE.

For the datasets, we ask that you provide attribution if using this data via the citation in the CITATION.cff file. We additionally require that you mark any changes to the dataset, and state specifically that the authors do not endorse your work unless such endorsement has been expressly given.

For the software, you can use, modify and share without attribution or marking changes.

Running the Jupyter notebooks (installation as non-root user)

To run the Jupyter notebooks, you have two options. The first is to use the mybinder.org interface, which let you interact with the notebooks via a web interface. You can launch the binder for this repository by clicking the binder badge in the repository header. Note that not all of the repository content is copied to the Docker image (this is specified in .dockerignore). The large checkpoint files are not included in the image, although they can be found in the repository at 2.simulation_data/GRILLIX/checkpoints_for_1mm. Additionally, the default docker image will not work with git.

Alternatively, if you'd like to run the notebooks locally or to extend the repository, you'll need to install additional Python packages. First of all, you need Python-3 and conda installed (latest versions recommended). Then, to install the necessary packages, we make a sandbox environment. This has a few advantages to installing packages globally — sudo rights are not required, you can install package versions without risking breaking other Python scripts, and if everything goes terribly wrong you can easily delete everything and restart. We've included a simple shell script to perform the necessary steps, which you can execute with

./install_env.sh

This will install the library in a subfolder of the TCV-X21 repository called tcvx21_env. It will also add a kernel to your global Jupyter installation. To remove the repository, you can delete the folder tcvx21_env and run jupyter kernelspec uninstall tcvx21.

To run tests and open Jupyter

Once you've installed via either option, you can activate the python environment with conda activate ./tcvx21_env. To deactivate, run conda deactivate.

Then, it is recommended to run the test suite with pytest which ensures that everything is installed and working correctly. If something fails, let us know in the issues. Note that this executes all of the analysis notebooks, so it might take a while to run.

Finally, run jupyter lab to open a Jupyter server in the TCV-X21 repository. Then, you can open any of the notebooks (.ipynb extension) by clicking in the side-bar.

A note on pinned dependencies

To ensure that the results are reproducible, the environment.yml file has pinned dependencies. However, if you want to use this software as a library, pinned dependencies are unnecessarily restrictive. You can remove the versions after the = sign in the environment.yml, but be warned that things might break.

You might also like...
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

Code for Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022)

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data? (SDM 2022) We consider how a user of a web servi

Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

This is the official repo for TransFill:  Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

A repository that shares tuning results of trained models generated by TensorFlow / Keras. Post-training quantization (Weight Quantization, Integer Quantization, Full Integer Quantization, Float16 Quantization), Quantization-aware training. TensorFlow Lite. OpenVINO. CoreML. TensorFlow.js. TF-TRT. MediaPipe. ONNX. [.tflite,.h5,.pb,saved_model,tfjs,tftrt,mlmodel,.xml/.bin, .onnx]
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

An experimental technique for efficiently exploring neural architectures.
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

A simple but complete full-attention transformer with a set of promising experimental features from various papers
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Comments
  • Repair results

    Repair results

    It appears that the 3.results folder had not been updated with the outputs of the notebooks.

    I've rerun the notebooks and now have the latest results in the folder.

    opened by TBody 1
Releases(v1.0)
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
A simple python stock Predictor

Python Stock Predictor A simple python stock Predictor Demo Run Locally Clone the project git clone https://github.com/yashraj-n/stock-price-predict

Yashraj narke 5 Nov 29, 2021
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022