This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Overview

Equivariant Neural Rendering

This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Colburn, A. Sankar, C. Guestrin, J. Susskind, Q. Shan, ICML 2020.

Pre-trained models

The weights for the trained chairs model are provided in trained-models/chairs.pt.

The other pre-trained models are located https://icml20-prod.cdn-apple.com/eqn-data/models/pre-trained_models.zip. They should be downloaded and placed into the trained-models directory. A small model chairs.pt is included in the git repo.

Examples

Requirements

The requirements can be directly installed from PyPi with pip install -r requirements.txt. Running the code requires python3.6 or higher.

Datasets

each zip file will expand into 3 separate components and a readme e.g:

  • cars-train.zip
  • cars-val.zip
  • cars-test.zip
  • readme.txt containing the license terms.

A few example images are provided in imgs/example-data/.

The chairs and car datasets were created with the help of Vincent Sitzmann.

Satellite imagery © 2020 Maxar Technologies.

We thank Bernhard Vogl ([email protected]) for the lightmaps. The MugsHQ were rendered utilizing an environmental map located at http://dativ.at/lightprobes.

Usage

Training a model

To train a model, run the following:

python experiments.py config.json

This supports both single and multi-GPU training (see config.json for detailed training options). Note that you need to download the datasets before running this command.

Quantitative evaluation

To evaluate a model, run the following:

python evaluate_psnr.py 
    
    

    
   

This will measure the performance (in PSNR) of a trained model on a test dataset.

Model exploration and visualization

The jupyter notebook exploration.ipynb shows how to use a trained model to infer a scene representation from a single image and how to use this representation to render novel views.

Coordinate system

The diagram below details the coordinate system we use for the voxel grid. Due to the manner in which images are stored in arrays and the way PyTorch's affine_grid and grid_sample functions work, this is a slightly unusual coordinate system. Note that theta and phi correspond to elevation and azimuth rotations of the camera around the scene representation. Note also that these are left handed rotations. Full details of the voxel rotation function can be found in transforms3d/rotations.py.

Citing

If you find this code useful in your research, consider citing with

@article{dupont2020equivariant,
  title={Equivariant Neural Rendering},
  author={Dupont, Emilien and Miguel Angel, Bautista and Colburn, Alex and Sankar, Aditya and Guestrin, Carlos and Susskind, Josh and Shan, Qi},
  journal={arXiv preprint arXiv:2006.07630},
  year={2020}
}

License

This project is licensed under the Apple Sample Code License

Owner
Apple
Apple
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Code for "The Intrinsic Dimension of Images and Its Impact on Learning" - ICLR 2021 Spotlight

dimensions Estimating the instrinsic dimensionality of image datasets Code for: The Intrinsic Dimensionaity of Images and Its Impact On Learning - Phi

Phil Pope 41 Dec 10, 2022
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

U^2-Net - Portrait matting This repository explores possibilities of using the original u^2-net model for portrait matting.

Dennis Bappert 104 Nov 25, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022