A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Overview

ClusterGCN

Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks" (KDD 2019).

Abstract

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy -- using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71.

This repository provides a PyTorch implementation of ClusterGCN as described in the paper:

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, Cho-Jui Hsieh. KDD, 2019. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx           1.11
tqdm               4.28.1
numpy              1.15.4
pandas             0.23.4
texttable          1.5.0
scipy              1.1.0
argparse           1.1.0
torch              0.4.1
torch-geometric    0.3.1
metis              0.2a.4
scikit-learn       0.20
torch_spline_conv  1.0.4
torch_sparse       0.2.2
torch_scatter      1.0.4
torch_cluster      1.1.5

Installing metis on Ubuntu:

sudo apt-get install libmetis-dev

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Pubmed` is included in the `input/` directory. In addition to the edgelist there is a csv file with the sparse features and another one with the target variable.

The **feature matrix** is a sparse one and it is stored as a csv. Features are indexed from 0 consecutively. The feature matrix csv is structured as:

NODE ID FEATURE ID Value
0 3 0.2
0 7 0.5
1 17 0.8
1 4 5.4
1 38 1.3
... ... ...
n 3 0.9

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

The training of a ClusterGCN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/edges.csv`.
  --features-path   STR    Features csv.         Default is `input/features.csv`.
  --target-path     STR    Target classes csv.    Default is `input/target.csv`.

Model options

  --clustering-method   STR     Clustering method.             Default is `metis`.
  --cluster-number      INT     Number of clusters.            Default is 10. 
  --seed                INT     Random seed.                   Default is 42.
  --epochs              INT     Number of training epochs.     Default is 200.
  --test-ratio          FLOAT   Training set ratio.            Default is 0.9.
  --learning-rate       FLOAT   Adam learning rate.            Default is 0.01.
  --dropout             FLOAT   Dropout rate value.            Default is 0.5.
  --layers              LST     Layer sizes.                   Default is [16, 16, 16]. 

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a ClusterGCN model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with a different layer structure:

$ python src/main.py --layers 64 64

Training a random clustered model:

$ python src/main.py --clustering-method random

License

Comments
  • Segmentation fault While running main.py on Ubuntu

    Segmentation fault While running main.py on Ubuntu

    while i am running main.py i am getting the segmentation fault error on Ubuntu.

    python3 main.py --epochs 100

    +-------------------+----------------------------------------------------------+ | Parameter | Value | +===================+==========================================================+ | Cluster number | 10 | +-------------------+----------------------------------------------------------+ | Clustering method | metis | +-------------------+----------------------------------------------------------+ | Dropout | 0.500 | +-------------------+----------------------------------------------------------+ | Edge path | /home/User/Desktop/ClusterGCN-master/input/edges.csv | +-------------------+----------------------------------------------------------+ | Epochs | 100 | +-------------------+----------------------------------------------------------+ | Features path | /home/User/Desktop/ClusterGCN- | | | master/input/features.csv | +-------------------+----------------------------------------------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------------------------------------------+ | Learning rate | 0.010 | +-------------------+----------------------------------------------------------+ | Seed | 42 | +-------------------+----------------------------------------------------------+ | Target path | /home/User/Desktop/ClusterGCN- | | | master/input//target.csv | +-------------------+----------------------------------------------------------+ | Test ratio | 0.900 | +-------------------+----------------------------------------------------------+

    Metis graph clustering started.

    Segmentation fault

    opened by alamsaqib 4
  • ImportError: No module named 'torch_spline_conv'

    ImportError: No module named 'torch_spline_conv'

    I followed the instructions of installation properly, however, error above occurred.

    After checking the site packages folder, i do not find the file torch_spline_conv. I will google around for finding out why that is happening, but thought you might have some insights

    Any help is appreciated.

    The complete trace is as follows

    File "src/main.py", line 4, in <module>
        from clustergcn import ClusterGCNTrainer
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/clustergcn.py", line 5, in <module>
        from layers import StackedGCN
      File "/media/anuj/Softwares & Study Material/Study Material/MS Stuff/RA/ClusterGCN/src/layers.py", line 2, in <module>
        from torch_geometric.nn import GCNConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/__init__.py", line 1, in <module>
        from .conv import *  # noqa
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/__init__.py", line 1, in <module>
        from .spline_conv import SplineConv
      File "/home/anuj/virtualenv-forest/gcn/lib/python3.5/site-packages/torch_geometric/nn/conv/spline_conv.py", line 3, in <module>
        from torch_spline_conv import SplineConv as Conv
    ImportError: No module named 'torch_spline_conv'
    
    
    opened by 1byxero 2
  • For ppi

    For ppi

    Hello. Thanks for your work and code. It's great that Cluster-GCN achieves great performance in PPI datasets. But it seems that you have not opened source the code for PPI node classification.

    Do you find the best model on validation dataset at first then test on the unseen test dataset? I notice that GraphStar now is the SOTA. However, they don't use the validation dataset and directly find the best model on test dataset.

    Can you share code of PPI with us and mention how to split dataset in the readme file? It's important for others to follow your great job.

    opened by guochengqian 2
  • Metis hits a Segmentation fault when running _METIS_PartGraphKway

    Metis hits a Segmentation fault when running _METIS_PartGraphKway

    • I'm using the default test input files.

    • I've attached pdb screenshot during the run.

    • Environment: Ubuntu 18.04 Anaconda (Python 3.7.3),
      torch-geometric==1.3.0 torch-scatter==1.3.0 torch-sparse==0.4.0 torch-spline-conv==1.1.0 metis==0.2a.4

    PDB Error Screenshot from 2019-07-04 13-56-16

    Requirements.txt Screenshot from 2019-07-04 14-02-14

    opened by poppingtonic 2
  • The error of metis, Segmentation fault (core dumped)

    The error of metis, Segmentation fault (core dumped)

    I found that I can use the random model to divide the graph, but when using Metis, the code will terminate abnormally. I want to ask what causes this. I change "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '32')" in metis.py (line 31) to "IDXTYPEWIDTH = os.getenv('METIS_IDXTYPEWIDTH', '64')", but it doesn't work!!!

    python src/main.py +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 200 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Segmentation fault (core dumped)

    opened by yiyang-wang 1
  • TypeError: object of type 'int' has no len()

    TypeError: object of type 'int' has no len()

    hello, when I run main.py, I found the error message: File "D:\anaconda3.4\lib\site-packages\pymetis_init_.py", line 44, in _prepare_graph for i in range(len(adjacency)): TypeError: object of type 'int' has no len()

    I have installed pymetis package to solve the metis.dll, this error occurs in the pymetis_init_.py. do you know how to solve it?

    opened by tanjia123456 1
  • RuntimeError: Could not locate METIS dll.

    RuntimeError: Could not locate METIS dll.

    hello,when I run main.py, the error massage appears:

    raise RuntimeError('Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.') RuntimeError: Could not locate METIS dll. Please set the METIS_DLL environment variable to its full path.

    do you know how to solve it?

    opened by tanjia123456 1
  • Runtime error about metis

    Runtime error about metis

    At the train begining that part the full graph, the function "metis.part_graph(self.graph, self.args.cluster_number)" throws an error: Traceback (most recent call last): File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 30, in <module> main() File "C:/Users/xieRu/Desktop/ML/ClusterGCN/src/main.py", line 19, in main clustering_machine.decompose() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 38, in decompose self.metis_clustering() File "C:\Users\xieRu\Desktop\ML\ClusterGCN\src\clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 800, in part_graph _METIS_PartGraphKway(*args) File "D:\Program\Anaconda\lib\site-packages\metis.py", line 677, in _METIS_PartGraphKway adjwgt, nparts, tpwgts, ubvec, options, objval, part) OSError: exception: access violation writing 0x000001B0B9C0E000

    But I tried test package metis as follow, It works: ` import metis from networkx import karate_club_graph

    zkc = karate_club_graph() graph_clustering=metis.part_graph(zkc) ` So, what happend?

    opened by ByskyXie 1
  • some question about code

    some question about code

    It seems like your code didn't consider the connection between clusters,and normalization that are mentioned in paper ,will you add these two options?

    opened by thunderbird0902 1
  • About installation

    About installation

    Hi there: Thank you for your great work, I've finally got the code running. To make the installation in README.md more precise & complete. You may want to add the following dependancies:

    • torch_spline_conv == 1.0.4
    • torch_sparse == 0.2.2
    • torch_scatter == 1.0.4
    • torch_cluster == 1.1.5 (strict)
    opened by dkdk-ddk 1
  • Cannot run main.py

    Cannot run main.py

    src/main.py --epochs 100 +-------------------+----------------------+ | Parameter | Value | +===================+======================+ | Cluster number | 10 | +-------------------+----------------------+ | Clustering method | metis | +-------------------+----------------------+ | Dropout | 0.500 | +-------------------+----------------------+ | Edge path | ./input/edges.csv | +-------------------+----------------------+ | Epochs | 100 | +-------------------+----------------------+ | Features path | ./input/features.csv | +-------------------+----------------------+ | Layers | [16, 16, 16] | +-------------------+----------------------+ | Learning rate | 0.010 | +-------------------+----------------------+ | Seed | 42 | +-------------------+----------------------+ | Target path | ./input/target.csv | +-------------------+----------------------+ | Test ratio | 0.900 | +-------------------+----------------------+

    Metis graph clustering started.

    Traceback (most recent call last): File "src/main.py", line 24, in main() File "src/main.py", line 18, in main clustering_machine.decompose() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 38, in decompose self.metis_clustering() File "/Users/linmiao/gits/ClusterGCN/src/clustering.py", line 56, in metis_clustering (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) File "/usr/local/lib/python3.7/site-packages/metis.py", line 765, in part_graph graph = networkx_to_metis(graph) File "/usr/local/lib/python3.7/site-packages/metis.py", line 574, in networkx_to_metis for i in H.node: AttributeError: 'Graph' object has no attribute 'node'

    opened by linkerlin 1
  • issues about the metis algorithm

    issues about the metis algorithm

    (st, parts) = metis.part_graph(self.graph, self.args.cluster_number) Thanks for your awesome code, could you please tell me how metis conduct the graph partition? Cause the self.graph here doesn't include the information about edge weights and feature attributes.

    opened by immortal13 2
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Project page for the paper Semi-Supervised Raw-to-Raw Mapping 2021.

Mahmoud Afifi 22 Nov 08, 2022
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Official Repository for the ICCV 2021 paper "PixelSynth: Generating a 3D-Consistent Experience from a Single Image"

PixelSynth: Generating a 3D-Consistent Experience from a Single Image (ICCV 2021) Chris Rockwell, David F. Fouhey, and Justin Johnson [Project Website

Chris Rockwell 95 Nov 22, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022