Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

Overview

DeltaConv

[Paper] [Project page]

Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, and Klaus Hildebrandt.

Anisotropic convolution is a central building block of CNNs but challenging to transfer to surfaces. DeltaConv learns combinations and compositions of operators from vector calculus, which are a natural fit for curved surfaces. The result is a simple and robust anisotropic convolution operator for point clouds with state-of-the-art results.

Top: unlike images, surfaces have no global coordinate system. Bottom: DeltaConv learns both scalar and vector features using geometric operators.

Contents

Installation

  1. Clone this repository:
git clone https://github.com/rubenwiersma/deltaconv.git
  1. Create a conda environment from the environment.yml:
conda env create -n deltaconv -f environment.yml

Done!

Manual installation

If you wish to install DeltaConv in your own environment, proceed as follows.

  1. Make sure that you have installed:

  2. Install DeltaConv:

pip install deltaconv

Building DeltaConv for yourself

  1. Make sure you clone the repository with submodules:
git clone --recurse-submodules https://github.com/rubenwiersma/deltaconv.git

If you have already cloned the repository without submodules, you can fix it with git submodule update --init --recursive.

  1. Install from folder:
cd [root_folder]
pip install

Replicating the experiments

See the README.md in replication_scripts for instructions on replicating the experiments and using the pre-trained weights (available in experiments/pretrained_weights).

In short, you can run bash scripts to replicate our experiments. For example, evaluating pre-trained weights on ShapeNet:

cd [root_folder]
conda activate deltaconv
bash replication_scripts/pretrained/shapenet.sh

You can also directly run the python files in experiments:

python experiments/train_shapenet.py

Use the -h or --help flag to find out which arguments can be passed to the training script:

python experiments/train_shapenet.py -h

You can keep track of the training process with tensorboard:

tensorboard logdir=experiments/runs/shapenet_all

Anisotropic Diffusion

The code that was used to generate Figure 2 from the paper and Figure 2 and 3 from the supplement is a notebook in the folder experiments/anisotropic_diffusion.

Data

The training scripts assume that you have a data folder in experiments. ModelNet40 and ShapeNet download the datasets from a public repository. Instructions to download the data for human body shape segmentation, SHREC, and ScanObjectNN are given in the training scripts.

Tests

In the paper, we make statements about a number of properties of DeltaConv that are either a result of prior work or due to the implementation. We created a test suite to ensure that these properties hold for the implementation, along with unit tests for each module. For example:

  • Section 3.6, 3.7: Vector MLPs are equivariant to norm-preserving transformations, or coordinate-independent (rotations, reflections)
    • test/nn/test_mlp.py
    • test/nn/test_nonlin.py
  • Section 3.7: DeltaConv is coordinate-independent, a forward pass on a shape with one choice of bases leads to the same output and weight updates when run with different bases
    • test/nn/test_deltaconv.py
  • Introduction, section 3.2: The operators are robust to noise and outliers.
    • test/geometry/test_grad_div.py
  • Supplement, section 1: Vectors can be mapped between points with equation (15).
    • test/geometry/test_grad_div.py

Citations

Please cite our paper if this code contributes to an academic publication:

@Article{Wiersma2022DeltaConv,
  author    = {Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt},
  journal   = {Transactions on Graphics},
  title     = {DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds},
  year      = {2022},
  month     = jul,
  number    = {4},
  volume    = {41},
  doi       = {10.1145/3528223.3530166},
  publisher = {ACM},
}

The farthest point sampling code relies on Geometry Central:

@misc{geometrycentral,
  title = {geometry-central},
  author = {Nicholas Sharp and Keenan Crane and others},
  note = {www.geometry-central.net},
  year = {2019}
}

And we make use of PyG (and underlying packages) to load point clouds, compute sparse matrix products, and compute nearest neighbors:

@inproceedings{Fey/Lenssen/2019,
  title={Fast Graph Representation Learning with {PyTorch Geometric}},
  author={Fey, Matthias and Lenssen, Jan E.},
  booktitle={ICLR Workshop on Representation Learning on Graphs and Manifolds},
  year={2019},
}
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022