Learning Versatile Neural Architectures by Propagating Network Codes

Related tags

Deep LearningNCP
Overview

Learning Versatile Neural Architectures by Propagating Network Codes

Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang, Ping Luo

diagram

Introduction

This work includes:
(1) NAS-Bench-MR, a NAS benchmark built on four challenging datasets under practical training settings for learning task-transferable architectures.
(2) An efficient predictor-based algorithm Network Coding Propagation (NCP), which back-propagates the gradients of neural predictors to directly update architecture codes along desired gradient directions for various objectives.

This framework is implemented and tested with Ubuntu/Mac OS, CUDA 9.0/10.0, Python 3, Pytorch 1.3-1.6, NVIDIA Tesla V100/CPU.

Dataset

We build our benchmark on four computer vision tasks, i.e., image classification (ImageNet), semantic segmentation (CityScapes), 3D detection (KITTI), and video recognition (HMDB51). Totally 9 different settings are included, as shown in the data/*/trainval.pkl folders.

Note that each .pkl file contains more than 2500 architectures, and their corresponding evaluation results under multiple metrics. The original training logs and checkpoints (including model weights and optimizer data) will be uploaded to Google drive (more than 4T). We will share the download link once the upload is complete.

Quick start

First, train the predictor

python3 tools/train_predictor.py  # --cfg configs/seg.yaml

Then, edit architecture based on desired gradients

python3 tools/ncp.py  # --cfg configs/seg.yaml

Examples

  • An example in NAS-Bench-MR (Seg):
{'mIoU': 70.57,
 'mAcc': 80.07,
 'aAcc': 95.29,
 'input_channel': [16, 64],
 # [num_branches, [num_convs], [num_channels]]
 'network_setting': [[1, [3], [128]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [2, [3, 3], [32, 48]],
  [3, [2, 3, 2], [16, 32, 16]],
  [3, [2, 3, 2], [16, 32, 16]],
  [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
 'last_channel': 112,
 # [num_branches, num_block1, num_convs1, num_channels1, ..., num_block4, num_convs4, num_channels4, last_channel]
 'embedding': [16, 64, 1, 3, 128, 3, 3, 3, 32, 48, 2, 2, 3, 2, 16, 32, 16, 1, 2, 4, 1, 1, 96, 112, 48, 80]
}
  • Load Datasets:
import pickle
exps = pickle.load(open('data/seg/trainval.pkl', 'rb'))
# Then process each item in exps
  • Load Model / Get Params and Flops (based on the thop library):
import torch
from thop import profile
from models.supernet import MultiResolutionNet

# Get model using input_channel & network_setting & last_channel
model = MultiResolutionNet(input_channel=[16, 64],
                           network_setting=[[1, [3], [128]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [2, [3, 3], [32, 48]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [3, [2, 3, 2], [16, 32, 16]],
                            [4, [2, 4, 1, 1], [96, 112, 48, 80]]],
                          last_channel=112)

# Get Flops and Parameters
input = torch.randn(1, 3, 224, 224)
macs, params = profile(model, inputs=(input, ))  

structure

Data Format

Each code in data/search_list.txt denotes an architecture. It can be load in our supernet as follows:

  • Code2Setting
params = '96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'
embedding = [int(item) for item in params.replace('-', '_').split('_')]

embedding = [ 96, 128,   1,   1,  48,   1,   1,   1, 128,   8,   1,   1,
           1,   1, 128, 128, 120,   4,   4,   4,   4,   4, 128, 128,
         128, 128, 64]
input_channels = embedding[0:2]
block_1 = embedding[2:3] + [1] + embedding[3:5]
block_2 = embedding[5:6] + [2] + embedding[6:10]
block_3 = embedding[10:11] + [3] + embedding[11:17]
block_4 = embedding[17:18] + [4] + embedding[18:26]
last_channels = embedding[26:27]
network_setting = []
for item in [block_1, block_2, block_3, block_4]:
    for _ in range(item[0]):
        network_setting.append([item[1], item[2:-int(len(item) / 2 - 1)], item[-int(len(item) / 2 - 1):]])

# network_setting = [[1, [1], [48]], 
#  [2, [1, 1], [128, 8]],
#  [3, [1, 1, 1], [128, 128, 120]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]], 
#  [4, [4, 4, 4, 4], [128, 128, 128, 128]]]
# input_channels = [96, 128]
# last_channels = [64]
  • Setting2Code
input_channels = [str(item) for item in input_channels]
block_1 = [str(item) for item in block_1]
block_2 = [str(item) for item in block_2]
block_3 = [str(item) for item in block_3]
block_4 = [str(item) for item in block_4]
last_channels = [str(item) for item in last_channels]

params = [input_channels, block_1, block_2, block_3, block_4, last_channels]
params = ['_'.join(item) for item in params]
params = '-'.join(params)
# params
# 96_128-1_1_1_48-1_2_1_1_128_8-1_3_1_1_1_128_128_120-4_4_4_4_4_4_128_128_128_128-64'

License

For academic use, this project is licensed under the 2-clause BSD License. For commercial use, please contact the author.

Owner
Mingyu Ding
Mingyu Ding
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
Recognize Handwritten Digits using Deep Learning on the browser itself.

MNIST on the Web An attempt to predict MNIST handwritten digits from my PyTorch model from the browser (client-side) and not from the server, with the

Harjyot Bagga 7 May 28, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research

Megaverse Megaverse is a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of the engine enables ph

Aleksei Petrenko 191 Dec 23, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Keeping it safe - AI Based COVID-19 Tracker using Deep Learning and facial recognition

Vansh Wassan 15 Jun 17, 2021