Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Overview

Finite basis physics-informed neural networks (FBPINNs)


This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, B. Moseley, T. Nissen-Meyer and A. Markham, Jul 2021 ArXiv.


Key contributions

  • Physics-informed neural networks (PINNs) offer a powerful new paradigm for solving problems relating to differential equations
  • However, a key limitation is that PINNs struggle to scale to problems with large domains and/or multi-scale solutions
  • We present finite basis physics-informed neural networks (FBPINNs), which are able to scale to these problems
  • To do so, FBPINNs use a combination of domain decomposition, subdomain normalisation and flexible training schedules
  • FBPINNs outperform PINNs in terms of accuracy and computational resources required

Workflow

FBPINNs divide the problem domain into many small, overlapping subdomains. A neural network is placed within each subdomain such that within the center of the subdomain, the network learns the full solution, whilst in the overlapping regions, the solution is defined as the sum over all overlapping networks.

We use smooth, differentiable window functions to locally confine each network to its subdomain, and the inputs of each network are individually normalised over the subdomain.

In comparison to existing domain decomposition techniques, FBPINNs do not require additional interface terms in their loss function, and they ensure the solution is continuous across subdomain interfaces by the construction of their solution ansatz.

Installation

FBPINNs only requires Python libraries to run.

We recommend setting up a new environment, for example:

conda create -n fbpinns python=3  # Use conda package manager
conda activate fbpinns

and then installing the following libraries:

conda install scipy matplotlib jupyter
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install tensorboardX

All of our work was completed using PyTorch version 1.8.1 with CUDA 10.2.

Finally, download the source code:

git clone https://github.com/benmoseley/FBPINNs.git

Getting started

The workflow to train and compare FBPINNs and PINNs is very simple to set up, and consists of three steps:

  1. Initialise a problems.Problem class, which defines the differential equation (and boundary condition) you want to solve
  2. Initialise a constants.Constants object, which defines all of the other training hyperparameters (domain, number of subdomains, training schedule, .. etc)
  3. Pass this Constants object to the main.FBPINNTrainer or main.PINNTrainer class and call the .train() method to start training.

For example, to solve the problem du/dx = cos(wx) shown above you can use the following code to train a FBPINN / PINN:

P = problems.Cos1D_1(w=1, A=0)# initialise problem class

c1 = constants.Constants(
            RUN="FBPINN_%s"%(P.name),# run name
            P=P,# problem class
            SUBDOMAIN_XS=[np.linspace(-2*np.pi,2*np.pi,5)],# defines subdomains
            SUBDOMAIN_WS=[2*np.ones(5)],# defines width of overlapping regions between subdomains
            BOUNDARY_N=(1/P.w,),# optional arguments passed to the constraining operator
            Y_N=(0,1/P.w,),# defines unnormalisation
            ACTIVE_SCHEDULER=active_schedulers.AllActiveSchedulerND,# training scheduler
            ACTIVE_SCHEDULER_ARGS=(),# training scheduler arguments
            N_HIDDEN=16,# number of hidden units in subdomain network
            N_LAYERS=2,# number of hidden layers in subdomain network
            BATCH_SIZE=(200,),# number of training points
            N_STEPS=5000,# number of training steps
            BATCH_SIZE_TEST=(400,),# number of testing points
            )

run = main.FBPINNTrainer(c1)# train FBPINN
run.train()

c2 = constants.Constants(
            RUN="PINN_%s"%(P.name),
            P=P,
            SUBDOMAIN_XS=[np.linspace(-2*np.pi,2*np.pi,5)],
            BOUNDARY_N=(1/P.w,),
            Y_N=(0,1/P.w,),
            N_HIDDEN=32,
            N_LAYERS=3,
            BATCH_SIZE=(200,),
            N_STEPS=5000,
            BATCH_SIZE_TEST=(400,),
            )

run = main.PINNTrainer(c2)# train PINN
run.train()

The training code will automatically start outputting training statistics, plots and tensorboard summaries. The tensorboard summaries can be viewed by installing tensorboard and then running the command line tensorboard --logdir fbpinns/results/summaries/.

Defining your own problem.Problem class

To learn how to define and solve your own problem, see the Defining your own problem Jupyter notebook here.

Reproducing our results

The purpose of each folder is as follows:

  • fbpinns : contains the main code which defines and trains FBPINNs.
  • analytical_solutions : contains a copy of the BURGERS_SOLUTION code used to compute the exact solution to the Burgers equation problem.
  • seismic-cpml : contains a Python implementation of the SEISMIC_CPML FD library used to solve the wave equation problem.
  • shared_modules : contains generic Python helper functions and classes.

To reproduce the results in the paper, use the following steps:

  1. Run the scripts fbpinns/paper_main_1D.py, fbpinns/paper_main_2D.py, fbpinns/paper_main_3D.py. These train and save all of the FBPINNs and PINNs presented in the paper.
  2. Run the notebook fbpinns/Paper plots.ipynb. This generates all of the plots in the paper.

Further questions?

Please raise a GitHub issue or feel free to contact us.

Owner
Ben Moseley
Physics + AI researcher at University of Oxford, ML lead at NASA Frontier Development Lab
Ben Moseley
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
The Turing Change Point Detection Benchmark: An Extensive Benchmark Evaluation of Change Point Detection Algorithms on real-world data

Turing Change Point Detection Benchmark Welcome to the repository for the Turing Change Point Detection Benchmark, a benchmark evaluation of change po

The Alan Turing Institute 85 Dec 28, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Ian Covert 130 Jan 01, 2023
This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning

This is the code for Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning It includes /bert, which is the original BERT repos

Mitchell Gordon 11 Nov 15, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Software & Hardware to do multi color printing with Sharpies

3D Print Colorizer is a combination of 3D printed parts and a Cura plugin which allows anyone with an Ender 3 like 3D printer to produce multi colored

343 Jan 06, 2023
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022