Fuzzing the Kernel Using Unicornafl and AFL++

Overview

Unicorefuzz

Build Status code-style: black

Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19.

Is it any good?

yes.

AFL Screenshot

Unicorefuzz Setup

  • Install python2 & python3 (ucf uses python3, however qemu/unicorn needs python2 to build)
  • Run ./setup.sh, preferrably inside a Virtualenv (else python deps will be installed using --user). During install, afl++ and uDdbg as well as python deps will be pulled and installed.
  • Enjoy ucf

Upgrading

When upgrading from an early version of ucf:

  • Unicorefuzz will notify you of config changes and new options automatically.
  • Alternatively, run ucf spec to output a commented config.py spec-like element.
  • probe_wrapper.py is now ucf attach.
  • harness.py is now named ucf emu.
  • The song remains the same.

Debug Kernel Setup (Skip this if you know how this works)

  • Create a qemu-img and install your preferred OS on there through qemu
  • An easy way to get a working userspace up and running in QEMU is to follow the steps described by syzkaller, namely create-image.sh
  • For kernel customization you might want to clone your preferred kernel version and compile it on the host. This way you can also compile your own kernel modules (e.g. example_module).
  • In order to find out the address of a loaded module in the guest OS you can use cat /proc/modules to find out the base address of the module location. Use this as the offset for the function where you want to break. If you specify MODULE and BREAK_OFFSET in the config.py, it should use ./get_mod_addr.sh to start it automated.
  • You can compile the kernel with debug info. When you have compiled the linux kernel you can start gdb from the kernel folder with gdb vmlinux. After having loaded other modules you can use the lx-symbols command in gdb to load the symbols for the other modules (make sure the .ko files of the modules are in your kernel folder). This way you can just use something like break function_to_break to set breakpoints for the required functions.
  • In order to compile a custom kernel for Arch, download the current Arch kernel and set the .config to the Arch default. Then set DEBUG_KERNEL=y, DEBUG_INFO=y, GDB_SCRIPTS=y (for convenience), KASAN=y, KASAN_EXTRA=y. For convenience, we added a working example_config that can be place to the linux dir.
  • To only get necessary kernel modules boot the current system and execute lsmod > mylsmod and copy the mylsmod file to your host system into the linux kernel folder that you downloaded. Then you can use make LSMOD=mylsmod localmodconfig to only make the kernel modules that are actually needed by the guest system. Then you can compile the kernel like normal with make. Then mount the guest file system to /mnt and use make modules_install INSTALL_MOD_PATH=/mnt. At last you have to create a new initramfs, which apparently has to be done on the guest system. Here use mkinitcpio -k <folder in /lib/modules/...> -g <where to put initramfs>. Then you just need to copy that back to the host and let qemu know where your kernel and the initramfs are located.
  • Setting breakpoints anywhere else is possible. For this, set BREAKADDR in the config.py instead.
  • For fancy debugging, ucf uses uDdbg
  • Before fuzzing, run sudo ./setaflops.sh to initialize your system for fuzzing.

Run

  • ensure a target gdbserver is reachable, for example via ./startvm.sh
  • adapt config.py:
    • provide the target's gdbserver network address in the config to the probe wrapper
    • provide the target's target function to the probe wrapper and harness
    • make the harness put AFL's input to the desired memory location by adopting the place_input func config.py
    • add all EXITs
  • start ucf attach, it will (try to) connect to gdb.
  • make the target execute the target function (by using it inside the vm)
  • after the breakpoint was hit, run ucf fuzz. Make sure afl++ is in the PATH. (Use ./resumeafl.sh to resume using the same input folder)

Putting afl's input to the correct location must be coded invididually for most targets. However with modern binary analysis frameworks like IDA or Ghidra it's possible to find the desired location's address.

The following place_input method places at the data section of sk_buff in key_extract:

    # read input into param xyz here:
    rdx = uc.reg_read(UC_X86_REG_RDX)
    utils.map_page(uc, rdx) # ensure sk_buf is mapped
    bufferPtr = struct.unpack("<Q",uc.mem_read(rdx + 0xd8, 8))[0]
    utils.map_page(uc, bufferPtr) # ensure the buffer is mapped
    uc.mem_write(rdx, input) # insert afl input
    uc.mem_write(rdx + 0xc4, b"\xdc\x05") # fix tail

QEMUing the Kernel

A few general pointers. When using ./startvm.sh, the VM can be debugged via gdb. Use

$gdb
>file ./linux/vmlinux
>target remote :1234

This dynamic method makes it rather easy to find out breakpoints and that can then be fed to config.py. On top, startvm.sh will forward port 22 (ssh) to 8022 - you can use it to ssh into the VM. This makes it easier to interact with it.

Debugging

You can step through the code, starting at the breakpoint, with any given input. The fancy debugging makes use of uDdbg. To do so, run ucf emu -d $inputfile. Possible inputs to the harness (the thing wrapping afl-unicorn) that help debugging:

-d flag loads the target inside the unicorn debugger (uDdbg) -t flag enables the afl-unicorn tracer. It prints every emulated instruction, as well as displays memory accesses.

Gotchas

A few things to consider.

FS_BASE and GS_BASE

Unicorn did not offer a way to directly set model specific registers directly. The forked unicornafl version of AFL++ finally supports it. Most ugly code of earlier versions was scrapped.

Improve Fuzzing Speed

Right now, the Unicorefuzz ucf attach harness might need to be manually restarted after an amount of pages has been allocated. Allocated pages should propagate back to the forkserver parent automatically but might still get reloaded from disk for each iteration.

IO/Printthings

It's generally a good idea to nop out kprintf or kernel printing functionality if possible, when the program is loaded into the emulator.

Troubleshooting

If you got trouble running unicorefuzz, follow these rulse, worst case feel free to reach out to us, for example to @domenuk on twitter. For some notes on debugging and developing ucf and afl-unicorn further, read DEVELOPMENT.md

Just won't start

Run the harness without afl (ucf emu -t ./sometestcase). Make sure you are not in a virtualenv or in the correct one. If this works but it still crashes in AFL, set AFL_DEBUG_CHILD_OUTPUT=1 to see some harness output while fuzzing.

All testcases time out

Make sure ucf attach is running, in the same folder, and breakpoint has been triggered.

Owner
Security in Telecommunications
The Computer Security Group at Berlin University of Technology
Security in Telecommunications
Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model About This repository contains the code to replicate the syn

Haruka Kiyohara 12 Dec 07, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

[PDF] | [Slides] The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk) Installation Inst

MilaGraph 117 Dec 09, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Official repository of the paper 'Essentials for Class Incremental Learning'

Essentials for Class Incremental Learning Official repository of the paper 'Essentials for Class Incremental Learning' This Pytorch repository contain

33 Nov 27, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

fernando 6.5k Jan 02, 2023