This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection"

Overview

Anomaly Toolbox

Description

Anomaly Toolbox Powered by GANs.

This is the accompanying toolbox for the paper "A Survey on GANs for Anomaly Detection" (https://arxiv.org/pdf/1906.11632.pdf).

The toolbox is meant to be used by the user to explore the performance of different GAN based architectures (in our work aka "experiments"). It also already provides some datasets to perform experiments on:

We provided the MNIST dataset because the original works extensively use it. On the other hand, we have also added the previously listed datasets both because used by a particular architecture and because they contribute a good benchmark for the models we have implemented.

All the architectures were tested on commonly used datasets such as MNIST, FashionMNIST, CIFAR-10, and KDD99. Some of them were even tested on more specific datasets, such as an X-Ray dataset that, however, we could not provide because of the impossibility of getting the data (privacy reasons).

The user can create their own dataset and use it to test the models.

Quick Start

  • First thing first, install the toolbox
pip install anomaly-toolbox

Then you can choose what experiment to run. For example:

  • Run the GANomaly experiment (i.e., the GANomaly architecture) with hyperparameters tuning enabled, the pre-defined hyperparameters file hparams.json and the MNIST dataset:
anomaly-box.py --experiment GANomalyExperiment --hps-path path/to/config/hparams.json --dataset 
MNIST 
  • Otherwise, you can run all the experiments using the pre-defined hyperparameters file hparams. json and the MNIST dataset:
anomaly-box.py --run-all --hps-path path/to/config/hparams.json --dataset MNIST 

For any other information, feel free to check the help:

anomaly-box.py --help

Contribution

This work is completely open source, and we would appreciate any contribution to the code. Any merge request to enhance, correct or expand the work is welcome.

Notes

The structures of the models inside the toolbox come from their respective papers. We have tried to respect them as much as possible. However, sometimes, due to implementation issues, we had to make some minor-ish changes. For this reason, you could find out that, in some cases, some features such as the number of layers, the size of kernels, or other such things may differ from the originals.

However, you don't have to worry. The heart and purpose of the architectures have remained intact.

Installation

pip install anomaly-toolbox

Usage

Options:
  --experiment [AnoGANExperiment|DeScarGANExperiment|EGBADExperiment|GANomalyExperiment]
                                  Experiment to run.
  --hps-path PATH                 When running an experiment, the path of the
                                  JSON file where all the hyperparameters are
                                  located.  [required]
  --tuning BOOLEAN                If you want to use hyperparameters tuning,
                                  use 'True' here. Default is False.
  --dataset TEXT                  The dataset to use. Can be a ready to use
                                  dataset, or a .py file that implements the
                                  AnomalyDetectionDataset interface
                                  [required]
  --run-all BOOLEAN               Run all the available experiments
  --help                          Show this message and exit.

Datasets and Custom Datasets

The provided datasets are:

and are automatically downloaded when the user makes a specific choice: ["MNIST", "CorruptedMNIST", "SurfaceCracks","MVTecAD"].

The user can also add its own specific dataset. To do this, the new dataset should inherit from the AnomalyDetectionDataset abstract class implementing its own configure method. For a more detailed guide, the user can refer to the README.md file inside the src/anomaly_toolbox/datasets folder. Moreover, in the examples folder, the user can find a dummy.py module with the basic skeleton code to implement a dataset.

References

Owner
Zuru Tech
Open source @ ZURU Tech
Zuru Tech
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
This package contains a PyTorch Implementation of IB-GAN of the submitted paper in AAAI 2021

The PyTorch implementation of IB-GAN model of AAAI 2021 This package contains a PyTorch implementation of IB-GAN presented in the submitted paper (IB-

Insu Jeon 9 Mar 30, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023