Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Related tags

Deep Learnings2cnn
Overview

⚠️ ⚠️ This code is old and does not support the last versions of pytorch! Especially since the change in the fft interface. ⚠️ ⚠️

Spherical CNNs

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariance

Overview

This library contains a PyTorch implementation of the rotation equivariant CNNs for spherical signals (e.g. omnidirectional images, signals on the globe) as presented in [1]. Equivariant networks for the plane are available here.

Dependencies

(commands to install all the dependencies on a new conda environment)

conda create --name cuda9 python=3.6 
conda activate cuda9

# s2cnn deps
#conda install pytorch torchvision cuda90 -c pytorch # get correct command line at http://pytorch.org/
conda install -c anaconda cupy  
pip install pynvrtc joblib

# lie_learn deps
conda install -c anaconda cython  
conda install -c anaconda requests  

# shrec17 example dep
conda install -c anaconda scipy  
conda install -c conda-forge rtree shapely  
conda install -c conda-forge pyembree  
pip install "trimesh[easy]"  

Installation

To install, run

$ python setup.py install

Usage

Please have a look at the examples.

Please cite [1] in your work when using this library in your experiments.

Design choices for Spherical CNN Architectures

Spherical CNNs come with different choices of grids and grid hyperparameters which are on the first look not obviously related to those of conventional CNNs. The s2_near_identity_grid and so3_near_identity_grid are the preferred choices since they correspond to spatially localized kernels, defined at the north pole and rotated over the sphere via the action of SO(3). In contrast, s2_equatorial_grid and so3_equatorial_grid define line-like (or ring-like) kernels around the equator.

To clarify the possible parameter choices for s2_near_identity_grid:

max_beta:

Adapts the size of the kernel as angle measured from the north pole. Conventional CNNs on flat space usually use a fixed kernel size but pool the signal spatially. This spatial pooling gives the kernels in later layers an effectively increased field of view. One can emulate a pooling by a factor of 2 in spherical CNNs by decreasing the signal bandwidth by 2 and increasing max_beta by 2.

n_beta:

Number of rings of the kernel around the equator, equally spaced in [β=0, β=max_beta]. The choice n_beta=1 corresponds to a small 3x3 kernel in conv2d since in both cases the resulting kernel consists of one central pixel and one ring around the center.

n_alpha:

Gives the number of learned parameters of the rings around the pole. These values are per default equally spaced on the azimuth. A sensible number of values depends on the bandwidth and max_beta since a higher resolution or spatial extent allow to sample more fine kernels without producing aliased results. In practice this value is typically set to a constant, low value like 6 or 8. A reduced bandwidth of the signal is thereby counteracted by an increased max_beta to emulate spatial pooling.

The so3_near_identity_grid has two additional parameters max_gamma and n_gamma. SO(3) can be seen as a (principal) fiber bundle SO(3)→S² with the sphere S² as base space and fiber SO(2) attached to each point. The additional parameters control the grid on the fiber in the following way:

max_gamma:

The kernel spans over the fiber SO(2) between γ∈[0, max_gamma]. The fiber SO(2) encodes the kernel responses for every sampled orientation at a given position on the sphere. Setting max_gamma≨2π results in the kernel not seeing the responses of all kernel orientations simultaneously and is in general unfavored. Steerable CNNs [3] usually always use max_gamma=2π.

n_gamma:

Number of learned parameters on the fiber. Typically set equal to n_alpha, i.e. to a low value like 6 or 8.

See the deep model of the MNIST example for an example of how to adapt these parameters over layers.

Feedback

For questions and comments, feel free to contact us: geiger.mario (gmail), taco.cohen (gmail), jonas (argmin.xyz).

License

MIT

References

[1] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Spherical CNNs. International Conference on Learning Representations (ICLR), 2018.

[2] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Convolutional Networks for Spherical Signals. ICML Workshop on Principled Approaches to Deep Learning, 2017.

[3] Taco S. Cohen, Mario Geiger, Maurice Weiler, Intertwiners between Induced Representations (with applications to the theory of equivariant neural networks), ArXiv preprint 1803.10743, 2018.

Owner
Jonas Köhler
PhD student @noegroup - Research Scientist Intern @deepmind
Jonas Köhler
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution

Deep Learning: Architectures & Methods Project: Deep Learning for Audio Super-Resolution Figure: Example visualization of the method and baseline as a

Oliver Hahn 16 Dec 23, 2022
Facebook Research 605 Jan 02, 2023
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022