AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Overview

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning.

Label prediction on node a by Kipf-GCN and ConfGCN (this paper). L0 is a’s true label. Shade intensity of a node reflects the estimated score of label L1 assigned to that node. Since Kipf-GCN is not capable of estimating influence of one node on another, it is misled by the dominant label L1 in node a’s neighborhood and thereby making the wrong assignment. ConfGCN, on the other hand, estimates confidences (shown by bars) over the label scores, and uses them to increase influence of nodes b and c to estimate the right label on a. Please refer to paper for more details.

Dependencies

  • Compatible with TensorFlow 1.x and Python 3.x.
  • Dependencies can be installed using requirements.txt.

Dataset:

  • We use citation network datasets: Cora, Citeseer, Pubmed, and CoraML for evaluation in our paper.
  • Cora, Citeseer, and Pubmed datasets was taken directly from here. CoraML dataset was taken from here and was placed in the same format as other datasets for semi-supervised settings.
  • data.zip contains all the datasets in the required format.

Evaluate pretrained model:

  • Run setup.sh for setting up the environment and extracting the datasets and pre-trained models.
  • confgcn.py contains TensorFlow (1.x) based implementation of ConfGCN (proposed method).
  • Execute evaluate.sh for evaluating pre-trained ConfGCN model on all four datasets.

Training from scratch:

  • Execute setup.sh for setting up the environment and extracting datasets.

  • config/hyperparams.jsoncontains the best parameters for all four datasets.

  • For training ConfGCN run:

    python conf_gcn.py -data citeseer -name new_run

Citation

Please cite us if you use this code.

@InProceedings{vashishth19a,
  title = 	 {Confidence-based Graph Convolutional Networks for Semi-Supervised Learning},
  author = 	 {Vashishth, Shikhar and Yadav, Prateek and Bhandari, Manik and Talukdar, Partha},
  booktitle = 	 {Proceedings of Machine Learning Research},
  pages = 	 {1792--1801},
  year = 	 {2019},
  editor = 	 {Chaudhuri, Kamalika and Sugiyama, Masashi},
  volume = 	 {89},
  series = 	 {Proceedings of Machine Learning Research},
  address = 	 {},
  month = 	 {16--18 Apr},
  publisher = 	 {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v89/vashishth19a/vashishth19a.pdf},
  url = 	 {http://proceedings.mlr.press/v89/vashishth19a.html}
}

For any clarification, comments, or suggestions please create an issue or contact [email protected].

Owner
MALL Lab (IISc)
MALL Lab (IISc)
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Deep Two-View Structure-from-Motion Revisited

Deep Two-View Structure-from-Motion Revisited This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

Jianyuan Wang 145 Jan 06, 2023
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022