Image inpainting using Gaussian Mixture Models

Overview

dmfa_inpainting

Source code for:

Requirements

Python 3.8 or higher is required. Models have been implemented with PyTorch.

To install the requirements, running:

pip install -r requirements.txt

should suffice.

Running

To train the DMFA model, see the script:

python scripts/train_inpainter.py --h

To run classifier / WAE experiments, see the scripts:

python scripts/train_classifier_v2.py --h
python scripts/train_wae_v2.py --h

respectively.

Moreover, in the scripts/ directory we provide the *.sh scripts which run the model trainings with the same parameters as used in the paper.

All experiments are runnable on a single Nvidia GPU.

Inpainters used with classifiers and WAE

In order to run a classifier / WAE with DMFA, one must train the DMFA model first with the above script.

For some of the inpainters we compare our approach to, additional repositories must be cloned or installed:

DMFA Weights

We provide DMFA training results (among which are JSONs, weights and training arguments) here.

We provide results for following models, trained on complete and incomplete data:

  • MNIST - linear heads
  • SVHN - fully convolutional
  • CIFAR-10 - fully convolutional
  • CelebA - fully convolutional, trained on 64x64 images

Notebooks

There are several Jupyter Notebooks in the notebooks directory. They were used for initial experiments with the DMFA models, as well as analysis of the results and calculating metrics reported in the paper.

The notebooks are not guaranteed to run 100% correctly due to the subsequent code refactor.

Citation

If you find our work useful, please consider citing us!

@misc{przewięźlikowski2021misconv,
      title={MisConv: Convolutional Neural Networks for Missing Data}, 
      author={Marcin Przewięźlikowski and Marek Śmieja and Łukasz Struski and Jacek Tabor},
      year={2021},
      eprint={2110.14010},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@article{Przewiezlikowski_2020,
   title={Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model},
   ISBN={9783030638368},
   ISSN={1611-3349},
   url={http://dx.doi.org/10.1007/978-3-030-63836-8_19},
   DOI={10.1007/978-3-030-63836-8_19},
   journal={Lecture Notes in Computer Science},
   publisher={Springer International Publishing},
   author={Przewięźlikowski, Marcin and Śmieja, Marek and Struski, Łukasz},
   year={2020},
   pages={220–231}
}
Owner
Marcin Przewięźlikowski
https://mprzewie.github.io/
Marcin Przewięźlikowski
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
BitPack is a practical tool to efficiently save ultra-low precision/mixed-precision quantized models.

BitPack is a practical tool that can efficiently save quantized neural network models with mixed bitwidth.

Zhen Dong 36 Dec 02, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering

UnsupervisedR&R: Unsupervised Pointcloud Registration via Differentiable Rendering This repository holds all the code and data for our recent work on

Mohamed El Banani 118 Dec 06, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022