Bootstrapped Representation Learning on Graphs

Related tags

Deep Learningbgrl
Overview

Bootstrapped Representation Learning on Graphs

Overview of BGRL

This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs

The main scripts are train_transductive.py and train_ppi.py used for training on the transductive task datasets and the PPI dataset respectively.

For linear evaluation, using the checkpoints we provide

Setup

To set up a Python virtual environment with the required dependencies, run:

python3 -m venv bgrl_env
source bgrl_env/bin/activate
pip install --upgrade pip

Follow instructions to install PyTorch 1.9.1 and PyG:

pip install torch==1.9.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-1.9.0+cu111.html
pip install absl-py==0.12.0 tensorboard==2.6.0 ogb

The code uses PyG (PyTorch Geometric). All datasets are available through this package.

Experiments on transductive tasks

Train model from scratch

To run BGRL on a dataset from the transductive setting, use train_transductive.py and one of the configuration files that can be found in config/.

For example, to train on the Coauthor-CS dataset, use the following command:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg

Flags can be overwritten:

python3 train_transductive.py --flagfile=config/coauthor-cs.cfg\
                              --logdir=./runs/coauthor-cs-256\
                              --predictor_hidden_size=256

Evaluation is performed periodically during training. We fit a logistic regression model on top of the representation to assess its performance throughout training. Evaluation is triggered every eval_epochsand will not back-propagate any gradient to the encoder.

Test accuracies under linear evaluation are reported on TensorBoard. To start the tensorboard server run the following command:

tensorboard --logdir=./runs

Perform linear evaluation using the provided model weights

The configuration files we provide allow to reproduce the results in the paper, summarized in the table below. We also provide weights of the BGRL-trained encoders for each dataset.

WikiCS Amazon Computers Amazon Photos CoauthorCS CoauthorPhy
BGRL 79.98 ± 0.10
(weights)
90.34 ± 0.19
(weights)
93.17 ± 0.30
(weights)
93.31 ± 0.13
(weights)
95.73 ± 0.05
(weights)

To run linear evaluation, using the provided weights, run the following command for any of the datasets:

python3 linear_eval_transductive.py --flagfile=config-eval/coauthor-cs.cfg

Note that the dataset is split randomly between train/val/test, so the reported accuracy might be slightly different with each run. In our reported table, we average across multiple splits, as well as multiple randomly initialized network weights.

Experiments on inductive task with multiple graphs

To train on the PPI dataset, use train_ppi.py:

python3 train_ppi.py --flagfile=config/ppi.cfg

The evaluation for PPI is different due to the size of the dataset, we evaluate by training a linear layer on top of the representations via gradient descent for 100 steps.

The configuration files for the different architectures can be found in config/. We provide weights of the BGRL-trained encoder as well.

PPI
BGRL 69.41 ± 0.15 (weights)

To run linear evaluation, using the provided weights, run the following command:

python3 linear_eval_ppi.py --flagfile=config-eval/ppi.cfg

Note that our reported score is based on an average over multiple runs.

Citation

If you find the code useful for your research, please consider citing our work:

@misc{thakoor2021bootstrapped,
     title={Large-Scale Representation Learning on Graphs via Bootstrapping}, 
     author={Shantanu Thakoor and Corentin Tallec and Mohammad Gheshlaghi Azar and Mehdi Azabou and Eva L. Dyer and Rémi Munos and Petar Veličković and Michal Valko},
     year={2021},
     eprint={2102.06514},
     archivePrefix={arXiv},
     primaryClass={cs.LG}}
Owner
NerDS Lab :: Neural Data Science Lab
machine learning and neuroscience
NerDS Lab :: Neural Data Science Lab
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
Unofficial JAX implementations of Deep Learning models

JAX Models Table of Contents About The Project Getting Started Prerequisites Installation Usage Contributing License Contact About The Project The JAX

107 Jan 05, 2023
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
Towards Fine-Grained Reasoning for Fake News Detection

FinerFact This is the PyTorch implementation for the FinerFact model in the AAAI 2022 paper Towards Fine-Grained Reasoning for Fake News Detection (Ar

Ahren_Jin 15 Dec 15, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
Personal implementation of paper "Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval"

Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval This repo provides personal implementation of paper Approximate Ne

John 8 Oct 07, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
[ICCV 2021] Focal Frequency Loss for Image Reconstruction and Synthesis

Focal Frequency Loss - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Focal Fre

Liming Jiang 460 Jan 04, 2023
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022