PyTorch implementations of deep reinforcement learning algorithms and environments

Overview

Deep Reinforcement Learning Algorithms with PyTorch

Travis CI contributions welcome

RL PyTorch

This repository contains PyTorch implementations of deep reinforcement learning algorithms and environments.

(To help you remember things you learn about machine learning in general write them in Save All and try out the public deck there about Fast AI's machine learning textbook.)

Algorithms Implemented

  1. Deep Q Learning (DQN) (Mnih et al. 2013)
  2. DQN with Fixed Q Targets (Mnih et al. 2013)
  3. Double DQN (DDQN) (Hado van Hasselt et al. 2015)
  4. DDQN with Prioritised Experience Replay (Schaul et al. 2016)
  5. Dueling DDQN (Wang et al. 2016)
  6. REINFORCE (Williams et al. 1992)
  7. Deep Deterministic Policy Gradients (DDPG) (Lillicrap et al. 2016 )
  8. Twin Delayed Deep Deterministic Policy Gradients (TD3) (Fujimoto et al. 2018)
  9. Soft Actor-Critic (SAC) (Haarnoja et al. 2018)
  10. Soft Actor-Critic for Discrete Actions (SAC-Discrete) (Christodoulou 2019)
  11. Asynchronous Advantage Actor Critic (A3C) (Mnih et al. 2016)
  12. Syncrhonous Advantage Actor Critic (A2C)
  13. Proximal Policy Optimisation (PPO) (Schulman et al. 2017)
  14. DQN with Hindsight Experience Replay (DQN-HER) (Andrychowicz et al. 2018)
  15. DDPG with Hindsight Experience Replay (DDPG-HER) (Andrychowicz et al. 2018 )
  16. Hierarchical-DQN (h-DQN) (Kulkarni et al. 2016)
  17. Stochastic NNs for Hierarchical Reinforcement Learning (SNN-HRL) (Florensa et al. 2017)
  18. Diversity Is All You Need (DIAYN) (Eyensbach et al. 2018)

All implementations are able to quickly solve Cart Pole (discrete actions), Mountain Car Continuous (continuous actions), Bit Flipping (discrete actions with dynamic goals) or Fetch Reach (continuous actions with dynamic goals). I plan to add more hierarchical RL algorithms soon.

Environments Implemented

  1. Bit Flipping Game (as described in Andrychowicz et al. 2018)
  2. Four Rooms Game (as described in Sutton et al. 1998)
  3. Long Corridor Game (as described in Kulkarni et al. 2016)
  4. Ant-{Maze, Push, Fall} (as desribed in Nachum et al. 2018 and their accompanying code)

Results

1. Cart Pole and Mountain Car

Below shows various RL algorithms successfully learning discrete action game Cart Pole or continuous action game Mountain Car. The mean result from running the algorithms with 3 random seeds is shown with the shaded area representing plus and minus 1 standard deviation. Hyperparameters used can be found in files results/Cart_Pole.py and results/Mountain_Car.py.

Cart Pole and Mountain Car Results

2. Hindsight Experience Replay (HER) Experiements

Below shows the performance of DQN and DDPG with and without Hindsight Experience Replay (HER) in the Bit Flipping (14 bits) and Fetch Reach environments described in the papers Hindsight Experience Replay 2018 and Multi-Goal Reinforcement Learning 2018. The results replicate the results found in the papers and show how adding HER can allow an agent to solve problems that it otherwise would not be able to solve at all. Note that the same hyperparameters were used within each pair of agents and so the only difference between them was whether hindsight was used or not.

HER Experiment Results

3. Hierarchical Reinforcement Learning Experiments

The results on the left below show the performance of DQN and the algorithm hierarchical-DQN from Kulkarni et al. 2016 on the Long Corridor environment also explained in Kulkarni et al. 2016. The environment requires the agent to go to the end of a corridor before coming back in order to receive a larger reward. This delayed gratification and the aliasing of states makes it a somewhat impossible game for DQN to learn but if we introduce a meta-controller (as in h-DQN) which directs a lower-level controller how to behave we are able to make more progress. This aligns with the results found in the paper.

The results on the right show the performance of DDQN and algorithm Stochastic NNs for Hierarchical Reinforcement Learning (SNN-HRL) from Florensa et al. 2017. DDQN is used as the comparison because the implementation of SSN-HRL uses 2 DDQN algorithms within it. Note that the first 300 episodes of training for SNN-HRL were used for pre-training which is why there is no reward for those episodes.

Long Corridor and Four Rooms

Usage

The repository's high-level structure is:

├── agents                    
    ├── actor_critic_agents   
    ├── DQN_agents         
    ├── policy_gradient_agents
    └── stochastic_policy_search_agents 
├── environments   
├── results             
    └── data_and_graphs        
├── tests
├── utilities             
    └── data structures            

i) To watch the agents learn the above games

To watch all the different agents learn Cart Pole follow these steps:

git clone https://github.com/p-christ/Deep_RL_Implementations.git
cd Deep_RL_Implementations

conda create --name myenvname
y
conda activate myenvname

pip3 install -r requirements.txt

python results/Cart_Pole.py

For other games change the last line to one of the other files in the Results folder.

ii) To train the agents on another game

Most Open AI gym environments should work. All you would need to do is change the config.environment field (look at Results/Cart_Pole.py for an example of this).

You can also play with your own custom game if you create a separate class that inherits from gym.Env. See Environments/Four_Rooms_Environment.py for an example of a custom environment and then see the script Results/Four_Rooms.py to see how to have agents play the environment.

Owner
Petros Christodoulou
Petros Christodoulou
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022