Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Overview

Segmentation from Natural Language Expressions

This repository contains the code for the following paper:

  • R. Hu, M. Rohrbach, T. Darrell, Segmentation from Natural Language Expressions. in ECCV, 2016. (PDF)
@article{hu2016segmentation,
  title={Segmentation from Natural Language Expressions},
  author={Hu, Ronghang and Rohrbach, Marcus and Darrell, Trevor},
  journal={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2016}
}

Project Page: http://ronghanghu.com/text_objseg

Installation

  1. Install Google TensorFlow (v1.0.0 or higher) following the instructions here.
  2. Download this repository or clone with Git, and then cd into the root directory of the repository.

Demo

  1. Download the trained models:
    exp-referit/tfmodel/download_trained_models.sh.
  2. Run the language-based segmentation model demo in ./demo/text_objseg_demo.ipynb with Jupyter Notebook (IPython Notebook).

Image

Training and evaluation on ReferIt Dataset

Download dataset and VGG network

  1. Download ReferIt dataset:
    exp-referit/referit-dataset/download_referit_dataset.sh.
  2. Download VGG-16 network parameters trained on ImageNET 1000 classes:
    models/convert_caffemodel/params/download_vgg_params.sh.

Training

  1. You may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Build training batches for bounding boxes:
    python exp-referit/build_training_batches_det.py.
  3. Build training batches for segmentation:
    python exp-referit/build_training_batches_seg.py.
  4. Select the GPU you want to use during training:
    export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine.
  5. Train the language-based bounding box localization model:
    python exp-referit/exp_train_referit_det.py $GPU_ID.
  6. Train the low resolution language-based segmentation model (from the previous bounding box localization model):
    python exp-referit/init_referit_seg_lowres_from_det.py && python exp-referit/exp_train_referit_seg_lowres.py $GPU_ID.
  7. Train the high resolution language-based segmentation model (from the previous low resolution segmentation model):
    python exp-referit/init_referit_seg_highres_from_lowres.py && python exp-referit/exp_train_referit_seg_highres.py $GPU_ID.

Alternatively, you may skip the training procedure and download the trained models directly:
exp-referit/tfmodel/download_trained_models.sh.

Evaluation

  1. Select the GPU you want to use during testing: export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine. Also, you may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Run evaluation for the high resolution language-based segmentation model:
    python exp-referit/exp_test_referit_seg.py $GPU_ID
    This should reproduce the results in the paper.
  3. You may also evaluate the language-based bounding box localization model:
    python exp-referit/exp_test_referit_det.py $GPU_ID
    The results can be compared to this paper.
Owner
Ronghang Hu
Research Scientist, Facebook AI Research (FAIR)
Ronghang Hu
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Distributed DataLoader For Pytorch Based On Ray

Dpex——用户无感知分布式数据预处理组件 一、前言 随着GPU与CPU的算力差距越来越大以及模型训练时的预处理Pipeline变得越来越复杂,CPU部分的数据预处理已经逐渐成为了模型训练的瓶颈所在,这导致单机的GPU配置的提升并不能带来期望的线性加速。预处理性能瓶颈的本质在于每个GPU能够使用的C

Dalong 23 Nov 02, 2022
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP

CLIP2Video: Mastering Video-Text Retrieval via Image CLIP The implementation of paper CLIP2Video: Mastering Video-Text Retrieval via Image CLIP. CLIP2

168 Dec 29, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Repository for GNSS-based position estimation using a Deep Neural Network

Code repository accompanying our work on 'Improving GNSS Positioning using Neural Network-based Corrections'. In this paper, we present a Deep Neural

32 Dec 13, 2022