Lumped-element impedance calculator and frequency-domain plotter.

Related tags

Text Data & NLPfastZ
Overview

fastZ: Lumped-Element Impedance Calculator

fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include:

  • Support for lumped-parameter resistors, capacitors, and inductors.
  • Construction of series and parallel impedance networks with the + and // operators.
  • Element labels with subscript assignment using the subscript operator [].
  • Impedance calculation at a single frequency or over a numpy array using the call operator ().
  • Frequency-domain Bode magnitude plots with curve annotation.

You can also compute circuit transfer functions represented as the ratio of two impedance networks. See the PID compensator in the Examples section for more information.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np

Zin = ( L(v=22e-6) + ( C(v=100e-6) // R(v=2.0) )['p'] )['in']
fig, ax = bodez(Zin, ff=np.logspace(2, 5, 1000), zlines='Zin Zp', refzlines='R L C')

png

Installation

Install the fastZ package with pip:

pip install fastz

Dependencies: numpy and matplotlib

Usage

Constructing Impedance Models

Many impedance networks can be represented by series and parallel combinations of RLC elements. The fastZ package provides the classes R, L, and C along with the series and parallel operators + and // for this purpose. For example, a resistor R1 with a value of 50Ω is constructed as:

R1 = R('1', 50)
str(R1)
'R1[50Ω]'

The first argument to the constructor is the resistor's subscript. It gets appended to the the resistor's prefix 'R' to form the label 'R1'. The second argument is the resistor's value in Ohms. Both the subscript and value are optional, but keep the following rules in mind:

  • If you omit the subscript, you must pass the value using the keyword argument v.
  • If you omit the value, you must later provide it when evaulating or plotting the impedance (more about this below).

The LC constructors are similar, except that L accepts a value in Henreies (H) and C in Farads (F).

The addition operator + constructs series impedance networks. For example, we can build a series RC network using:

Zs = R(v=10.0) + C(v=1e-6)
str(Zs)
'(R[10.0Ω] + C[1e-06F])'

Similarly, the floor division operator // constructs parallel impedance networks. For example, a parallel RL network is constructed as:

Zp = R(v=100) // L(v=22e-6)
str(Zp)
'(R[100Ω] || L[2.2e-05H])'

Create more complex impedance networks by combining the series and parallel operators in hierarchy:

Zc = (R('1') + C('1')) // (R('2') + L('2') + C('2')) + L('3') // C('3')
str(Zc)
'(((R1 + C1) || (R2 + L2 + C2)) + (L3 || C3))'

Evalulating Impedance Models

Call an impedance with a single frequency or numpy array of frequencies using the call operator () to evalulate the impedance at those frequencies. For example, suppose we have the impedance:

Z = L(v=22e-6) + C(v=100e-6) // R(v=2.0)

You can evalulate its value at a frequency of 4kHz using:

Z(3e3)
(0.1314731604517404-0.0809519077494511j)

Or evalulate the impedance over multiple frequencies using:

Z(np.array([1, 1e3, 100e3]))
array([1.99999684e+00-2.37504008e-03j, 7.75453273e-01-8.36233246e-01j,
       1.26643460e-04+1.38070932e+01j])

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments to the call operator:

Z(3e3, L=100e-6, R=100.0)
(0.0028143981128015963+1.3544540460266075j)

Plotting Impedance Models

The bodez function provided within the plotting module draws the Bode magnitude plot of an impedance given a numpy array of the frequencies at which to evaulate the impedance. Use the optional string argument zlines to specify the whitespace-separated labels of additional sub-impedances to draw on the plot. The optional string argument refzlines specifies the labels of sub-impedances to plot in the reference-line style (dashed gray by default.) To change the horizontal postion of an impedances curve's annotation, append a colon followed by the horizontal location in frequency units. For example:

Z = (R(v=1) // L(v=100e-6) // C(v=200e-6))['p'] + L('2', 10e-6)
fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Z:30000 Zp:10000', refzlines='R:4000 L:100e3 C L2')

png

If you omitted element values when constructing an impedance network, or want to temporarily overwrite the values of some elements, you'll need to pass the element values as keyword arguments as well:

fig, ax = bodez(Z, ff=np.logspace(2, 5, 1000), zlines='Zp', refzlines='R L C L2', R=10, C=50e-6)

png

Using Subscripts

Subscripts are string or integer suffix values that help identify resistors, inductors, capacitors, and composite impedances. To assign a subscript to an RLC element, pass it to the constructor:

La = L('a', 1e-6)
str(La)
'La[1e-06H]'

You can assign a subscript to a composite impedance using the subscript operator []:

Zin = (R(v=1.0) + La)['in']
str(Zin)
'Zin:(R[1.0Ω] + La[1e-06H])'

Bode plot annotations reflect the appropriate subscripts:

fig, ax = bodez(Zin, ff=np.logspace(4, 7, 1000), refzlines='R La')

png

Accessing Sub-Impedances

We might build an impedance network consisting of multiple labeled subportions. For example:

Z1 = (C('1') + L('1'))['a'] // (R('2') + L('2'))['b'] // C('3')
str(Z1)
'(Za:(C1 + L1) || Zb:(R2 + L2) || C3)'

Sometimes it may be useful to access the sub-impedances Za and Zb, or the individual RLC elements. Use the subz method to do so:

Za = Z1.subz('Za')
str(Za)
'Za:(C1 + L1)'
C1 = Z1.subz('C1')
str(C1)
'C1'

Internally, the bodez plotting function relies on the subz method to plot additional impedances specified in the zlines and refzlines arguments

Computing Break Frequencies

The breakfreq method computes RC, RL, and LC break frequencies. A break frequency is the frequency at which one element's impedance magnitude equals the other element's impedance magnitude. Suppose we have the following parallel RLC network:

Z1 = R(v=1) // L(v=100e-6) // C(v=22e-6)
str(Z1)
'(R[1Ω] || L[0.0001H] || C[2.2e-05F])'

The following draws vertical lines at the RC, RL, and LC break frequencies:

fig, ax = bodez(Z1, ff=np.logspace(2.5, 4.5, 1000), refzlines='R L:2200 C:5000')
for fb in [Z1.breakfreq('R L'), Z1.breakfreq('L C'), Z1.breakfreq('R C')]:
    ax.axvline(x=fb, ls=':', color='red')

ax.set_ylim((0.1, 3))
(0.1, 3)

png

Examples

SMPS Output Impedance

Here's a model of the small-signal output impedance of a Buck, Boost, or Buck-Boost converter (switching-mode power supplies):

SMPS output impedance

Le is the effective output inductance of the converter, C is the output capacitor, and Rload represents the load. To make things a bit more interesting, we've included the inductor's ohmic loss as RL and the capacitor's equivalent series inductance and resistance as Lesl and Resr, respectively. We construct and evaluate a fastZ model with some sample component values below:

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt

Zout = ( R('load', 10) // (L('esl', 1e-6) + C(v=100e-6) + R('esr', 1))['cap'] // (L('e', 44e-6) + R('L', 3.0))['ind'] )['out']
bodez(Zout, ff=np.logspace(1, 7, 1000), 
      zlines='Zout:10e3 Zcap:10e3 Zind:10e3', 
      refzlines='Rload C:300 Lesl:120e3 Resr Le:7e3 RL')
plt.ylim((0.6, 12))
plt.show()

png

PID Compensator

This op amp circuit could appear in a feedback control loop as a PID (lead-lag) compensator:

PID compensator

VREF represents the setpoint of the feedback system (assumed constant in this case), vfb is the feedback voltage signal, and vc is the compensated output voltage signal. The transfer relationship is

Vc(s) = Gc(s)·Ve(s)

where ve = VREF - vfb is the error signal and Gc(s) = Z1(s)/Z2(s) is the compensator's transfer function. We can use fastZ to compute Gc since it is the ratio of two lumped-element impedance networks.

from fastz import R, L, C
from fastz.plotting import bodez
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import EngFormatter

# construct models of Z1 and Z2
Z1 = ( R('1', 30e3) + C('1', 20e-9) )['1']
Z2 = ( R('2', 10e3) // C('2', 5e-9) + R('3', 2e3) )['2']

# evalulate frequency response of Gc
ff = np.logspace(1, 6, 1000)
GGc = Z1(ff) / Z2(ff)

# plot the results
fig, (axm, axp) = plt.subplots(2, 1, figsize=(6, 8))
axz = axm.twinx()

bodez(Z1, ff, ax=axz, zlines='Z1:1e3', refzlines='R1 C1:5e3')
bodez(Z2, ff, ax=axz, zlines='Z2:1e3', refzlines='R2:800e3 R3 C2:200')
axm.loglog(ff, np.abs(GGc), color='purple')
axp.semilogx(ff, np.angle(GGc)*180/np.pi, color='purple')
axm.annotate('$|G_c|$', (ff[-1], abs(GGc[-1])), 
             ha='center', va='center', backgroundcolor='w')
axp.annotate('$\\angle G_c$', (ff[-10], np.angle(GGc[-10])*180/np.pi), 
             ha='center', va='center', backgroundcolor='w')

axm.xaxis.set_major_formatter(EngFormatter())
axp.xaxis.set_major_formatter(EngFormatter())
axm.set_ylabel('Compensator Gain (V/V)')
axp.set_ylabel('Compensator Phase Shift (°)')
axp.set_xlabel('Frequency (Hz)')
axm.set_ylim((1, 110))
axz.set_ylim((1e3, 1e6))
plt.show()

png

You can see that there's a phase boost of about 40° at 10kHz. An inverted zero appears at about 300Hz to boost the low-frequency gain.

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Wesley Hileman - [email protected]

Owner
Wesley Hileman
Wesley Hileman
An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Khalid Saifullah 37 Sep 05, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022
Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

TextDistance TextDistance -- python library for comparing distance between two or more sequences by many algorithms. Features: 30+ algorithms Pure pyt

Life4 3k Jan 06, 2023
Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models.

Tevatron Tevatron is a simple and efficient toolkit for training and running dense retrievers with deep language models. The toolkit has a modularized

texttron 193 Jan 04, 2023
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
TalkNet: Audio-visual active speaker detection Model

Is someone talking? TalkNet: Audio-visual active speaker detection Model This repository contains the code for our ACM MM 2021 paper, TalkNet, an acti

142 Dec 14, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

WIT (Wikipedia-based Image Text) Dataset is a large multimodal multilingual dataset comprising 37M+ image-text sets with 11M+ unique images across 100+ languages.

Google Research Datasets 740 Dec 24, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022