Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Related tags

Deep Learningle_sde
Overview

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

This repo contains official code for the NeurIPS 2021 paper Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations by Jiayao Zhang, Hua Wang, Weijie J. Su.

Discussions welcome, please submit via Discussions. You can also read the reviews on OpenReview.

@misc{zhang2021imitating,
      title={Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations}, 
      author={Jiayao Zhang and Hua Wang and Weijie J. Su},
      year={2021},
      eprint={2110.05960},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Reproducing Experiments

Dependencies

We use Python 3.8 and pytorch for training neural nets, please use pip install -r requirements.txt (potentially in a virtual environment) to install dependencies.

Datasets

We use a dataset of geometric shapes (GeoMNIST) we constructed as well as CIFAR-10. GeoMNIST is lightweighted and will be generated when simulation runs; CIFAR-10 will be downloaded from torchvision.

Code Structure

After instsalling the dependencies, one may navigate through the two Jupyter notebooks for running experiments and producing plots and figures. Below we outline the code structure.

.
├── LICENSE                         # code license
├── README.md                       # this file
├── LE-SDE Data Analysis.ipynb      # reproducing plots and figures
├── LE-SDE Experiments.ipynb        # reproducing experiments
└── src                         # source code
    ├── data_analyzer.py            # processing experiment data
    ├── datasets.py                 # generating and loading datasets
    ├── models.py                   # definition of neural net models
    ├── plotter.py                  # generating plots and figures
    └── utils.py                    # utilities, including training pipelines
└── exp_data                    # experiment data
    ├── *.csv                       # dataframes from neural net training
    └── *.npy                       # numpy.ndarray storing LE-ODE simulations

More info regarding npy files can be found in the numpy documentation.

Reproducing Figures

Experiment Data

Although all simulations can be run on your machine, it is quite time-consuming. Data from our experiments can be downloaded from the following anonymous Dropbox links:

After downloading those tarballs, extract them into ./exp_data (or change the EXP_DIR variable in the notebooks accordingly).

Plotter

Once experiment data are ready, simply follow LE-SDE Data Analysis.ipynb for reproducing all figures.

Owner
Jiayao Zhang
Ph.D. Student at UPenn
Jiayao Zhang
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022