Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Related tags

Deep Learningle_sde
Overview

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

This repo contains official code for the NeurIPS 2021 paper Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations by Jiayao Zhang, Hua Wang, Weijie J. Su.

Discussions welcome, please submit via Discussions. You can also read the reviews on OpenReview.

@misc{zhang2021imitating,
      title={Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations}, 
      author={Jiayao Zhang and Hua Wang and Weijie J. Su},
      year={2021},
      eprint={2110.05960},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Reproducing Experiments

Dependencies

We use Python 3.8 and pytorch for training neural nets, please use pip install -r requirements.txt (potentially in a virtual environment) to install dependencies.

Datasets

We use a dataset of geometric shapes (GeoMNIST) we constructed as well as CIFAR-10. GeoMNIST is lightweighted and will be generated when simulation runs; CIFAR-10 will be downloaded from torchvision.

Code Structure

After instsalling the dependencies, one may navigate through the two Jupyter notebooks for running experiments and producing plots and figures. Below we outline the code structure.

.
├── LICENSE                         # code license
├── README.md                       # this file
├── LE-SDE Data Analysis.ipynb      # reproducing plots and figures
├── LE-SDE Experiments.ipynb        # reproducing experiments
└── src                         # source code
    ├── data_analyzer.py            # processing experiment data
    ├── datasets.py                 # generating and loading datasets
    ├── models.py                   # definition of neural net models
    ├── plotter.py                  # generating plots and figures
    └── utils.py                    # utilities, including training pipelines
└── exp_data                    # experiment data
    ├── *.csv                       # dataframes from neural net training
    └── *.npy                       # numpy.ndarray storing LE-ODE simulations

More info regarding npy files can be found in the numpy documentation.

Reproducing Figures

Experiment Data

Although all simulations can be run on your machine, it is quite time-consuming. Data from our experiments can be downloaded from the following anonymous Dropbox links:

After downloading those tarballs, extract them into ./exp_data (or change the EXP_DIR variable in the notebooks accordingly).

Plotter

Once experiment data are ready, simply follow LE-SDE Data Analysis.ipynb for reproducing all figures.

Owner
Jiayao Zhang
Ph.D. Student at UPenn
Jiayao Zhang
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
[CVPR'21] FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space

FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space by Quande Liu, Cheng Chen, Ji

Quande Liu 178 Jan 06, 2023
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022