A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Overview

Probabilistic U-Net

+ **Update**
+ An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below.

Re-implementation of the model described in `A Probabilistic U-Net for Segmentation of Ambiguous Images' (paper @ NeurIPS 2018).

This was also a spotlight presentation at NeurIPS and a short video on the paper of similar content can be found here (4min).

The architecture of the Probabilistic U-Net is depicted below: subfigure a) shows sampling and b) the training setup:

Below see samples conditioned on held-out validation set images from the (stochastic) CityScapes data set:

Setup package in virtual environment

git clone https://github.com/SimonKohl/probabilistic_unet.git .
cd prob_unet/
virtualenv -p python3 venv
source venv/bin/activate
pip3 install -e .

Install batch-generators for data augmentation

cd ..
git clone https://github.com/MIC-DKFZ/batchgenerators
cd batchgenerators
pip3 install nilearn scikit-image nibabel
pip3 install -e .
cd prob_unet

Download & preprocess the Cityscapes dataset

  1. Create a login account on the Cityscapes website: https://www.cityscapes-dataset.com/
  2. Once you've logged in, download the train, val and test annotations and images:
  3. unzip the data (unzip _trainvaltest.zip) and adjust raw_data_dir (full path to unzipped files) and out_dir (full path to desired output directory) in preprocessing_config.py
  4. bilinearly rescale the data to a resolution of 256 x 512 and save as numpy arrays by running
cd cityscapes
python3 preprocessing.py
cd ..

Training

[skip to evaluation in case you only want to use the pretrained model.]
modify data_dir and exp_dir in scripts/prob_unet_config.py then:

cd training
python3 train_prob_unet.py --config prob_unet_config.py

Evaluation

Load your own trained model or use a pretrained model. A set of pretrained weights can be downloaded from zenodo.org (187MB). After down-loading, unpack the file via tar -xvzf pretrained_weights.tar.gz, e.g. in /model. In either case (using your own or the pretrained model), modify the data_dir and exp_dir in evaluation/cityscapes_eval_config.py to match you paths.

then first write samples (defaults to 16 segmentation samples for each of the 500 validation images):

cd ../evaluation
python3 eval_cityscapes.py --write_samples

followed by their evaluation (which is multi-threaded and thus reasonably fast):

python3 eval_cityscapes.py --eval_samples

The evaluation produces a dictionary holding the results. These can be visualized by launching an ipython notbook:

jupyter notebook evaluation_plots.ipynb

The following results are obtained from the pretrained model using above notebook:

Tests

The evaluation metrics are under test-coverage. Run the tests as follows:

cd ../tests/evaluation
python3 -m pytest eval_tests.py

Deviations from original work

The code found in this repository was not used in the original paper and slight modifications apply:

  • training on a single gpu (Titan Xp) instead of distributed training, which is not supported in this implementation
  • average-pooling rather than bilinear interpolation is used for down-sampling operations in the model
  • the number of conv kernels is kept constant after the 3rd scale as opposed to strictly doubling it after each scale (for reduction of memory footprint)
  • HeNormal weight initialization worked better than a orthogonal weight initialization

How to cite this code

Please cite the original publication:

@article{kohl2018probabilistic,
  title={A Probabilistic U-Net for Segmentation of Ambiguous Images},
  author={Kohl, Simon AA and Romera-Paredes, Bernardino and Meyer, Clemens and De Fauw, Jeffrey and Ledsam, Joseph R and Maier-Hein, Klaus H and Eslami, SM and Rezende, Danilo Jimenez and Ronneberger, Olaf},
  journal={arXiv preprint arXiv:1806.05034},
  year={2018}
}

License

The code is published under the Apache License Version 2.0.

Update: The Hierarchical Probabilistic U-Net + LIDC crops

We published an improved model, the Hierarchical Probabilistic U-Net at the Medical Imaging meets Neurips Workshop 2019.

The paper is available from arXiv under A Hierarchical Probabilistic U-Net for Modeling Multi-Scale Ambiguities, May 2019.

The model code is freely available from DeepMind's github repo, see here: code link.

The LIDC data can be downloaded as pngs, cropped to size 180 x 180 from Google Cloud Storage, see here: data link.

A pretrained model can be readily applied to the data using the following Google Colab: Open In Colab.

Owner
Simon Kohl
Simon Kohl
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022