PyTorch implementation for paper Neural Marching Cubes.

Related tags

Deep LearningNMC
Overview

NMC

PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang.

Paper | Supplementary Material (to be updated)

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021nmc,
  title={Neural Marching Cubes},
  author={Zhiqin Chen and Hao Zhang},
  journal={arXiv preprint arXiv:2106.11272},
  year={2021}
}

Notice

We have implemented Neural Dual Contouring (NDC). NDC is based on Dual Contouring and thus much easier to implement than NMC. It produces less triangles and vertices (1/8 of NMC, 1/4 of NMC-lite, ≈MC33), with better triangle quality. It runs faster than NMC because it has significantly less values to predict for each cube (1 bool 3 float for NDC, v.s. 5 bool 51 float for NMC), therefore the network size could be significantly reduced. Yet, it cannot reconstruct some cube cases, and may introduce non-manifold edges.

Requirements

  • Python 3 with numpy, h5py, scipy and Cython
  • PyTorch 1.8 (other versions may also work)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preprocessing.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Note that the weights are divided into six folders:

Folder Method Input
1_NMC_sdf_unit_scale NMC SDF grid, each grid cell must have unit length
2_NMC_lite_sdf_unit_scale NMC-lite SDF grid, each grid cell must have unit length
3_NMC_voxel NMC Voxel grid, 1=occupied, 0=otherwise
4_NMC_lite_voxel NMC-lite Voxel grid, 1=occupied, 0=otherwise
5_NMC_sdf_scale_0.001-2 NMC SDF grid, each grid cell could have length from 0.001 to 2.0
6_NMC_lite_sdf_scale_0.001-2 NMC-lite SDF grid, each grid cell could have length from 0.001 to 2.0
This GitHub repo NMC = 5_NMC_sdf_scale_0.001-2

Training and Testing

Before training, please replace LUT_tess.npz (the Look-Up Table for cube tessellations) in the main directory with the corresponding version of your training target (either NMC or NMC-lite). Both versions of LUT_tess.npz can be found at tessellation.

To train/test NMC with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type sdf

To train/test NMC-lite with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type sdf

To train/test NMC with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type voxel

To train/test NMC-lite with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type voxel

To evaluate Chamfer Distance, Normal Consistency, F-score, Edge Chamfer Distance, Edge F-score, you need to have the ground truth normalized obj files ready in a folder objs. See data_preprocessing for how to prepare the obj files. Then you can run:

python eval_cd_nc_f1_ecd_ef1.py

To count the number of triangles and vertices, run:

python eval_v_t_count.py

If you want to test on your own dataset, please refer to data_preprocessing for how to convert obj files into SDF grids and voxel grids. If your data are not meshes (say your data are already voxel grids), you can modify the code in utils.py to read your own data format. Check function read_data_input_only in utils.py for an example.

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020)

GraspNet Baseline Baseline model for "GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping" (CVPR 2020). [paper] [dataset] [API] [do

GraspNet 209 Dec 29, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022
Riemann Noise Injection With PyTorch

Riemann Noise Injection - PyTorch A module for modeling GAN noise injection based on Riemann geometry, as described in Ruili Feng, Deli Zhao, and Zhen

2 May 27, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022