This repository contains the code for the paper Neural RGB-D Surface Reconstruction

Overview

Neural RGB-D Surface Reconstruction

Paper | Project Page | Video

Neural RGB-D Surface Reconstruction
Dejan Azinović, Ricardo Martin-Brualla, Dan B Goldman, Matthias Nießner, Justus Thies
Arxiv Pre-print

This repository contains the code for the paper Neural RGB-D Surface Reconstruction, a novel approach for 3D reconstruction that combines implicit surface representations with neural radiance fields.

Installation

You can create a conda environment called neural_rgbd using:

conda env create -f environment.yaml
conda activate neural_rgbd

Make sure to clone the external Marching Cubes dependency and install it in the same environment:

cd external/NumpyMarchingCubes
python setup.py install

You can run an optimization using:

python optimize.py --config configs/
   
    .txt

   

Data

The data needs to be in the following format:


   
                # args.datadir in the config file
├── depth               # raw (real data) or ground truth (synthetic data) depth images (optional)
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── depth_filtered      # filtered depth images
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── depth_with_noise    # depth images with synthetic noise and artifacts (optional)
    ├── depth0.png     
    ├── depth1.png
    ├── depth2.png
    ...
├── images              # RGB images
    ├── img0.png     
    ├── img1.png
    ├── img2.png
    ...
├── focal.txt           # focal length
├── poses.txt           # ground truth poses (optional)
├── trainval_poses.txt  # camera poses used for optimization

   

The dataloader is hard-coded to load depth maps from the depth_filtered folder. These depth maps have been generated from the raw ones (or depth_with_noise in the case of synthetic data) using the same bilateral filter that was used by BundleFusion. The method also works with the raw depth maps, but the results are slightly degraded.

The file focal.txt contains a single floating point value representing the focal length of the camera in pixels.

The files poses.txt and trainval_poses.txt contain the camera matrices in the format 4N x 4, where is the number of cameras in the trajectory. Like the NeRF paper, we use the OpenGL convention for the camera's coordinate system. If you run this code on ScanNet data, make sure to transform the poses to the OpenGL system, since ScanNet used a different convention.

You can also write your own dataloader. You can use the existing load_scannet.py as template and update load_dataset.py.

Citation

If you use this code in your research, please consider citing:

@misc{azinović2021neural,
      title={Neural RGB-D Surface Reconstruction}, 
      author={Dejan Azinović and Ricardo Martin-Brualla and Dan B Goldman and Matthias Nießner and Justus Thies},
      year={2021},
      eprint={2104.04532},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Further information

The code is largely based on the original NeRF code by Mildenhall et al. https://github.com/bmild/nerf

The Marching Cubes implementation was adapted from the SPSG code by Dai et al. https://github.com/angeladai/spsg

Owner
Dejan
Dejan
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Council-GAN Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020) Paper Ori Nizan , Ayellet Tal, Breaking the Cycle

ori nizan 260 Nov 16, 2022
Dirty Pixels: Towards End-to-End Image Processing and Perception

Dirty Pixels: Towards End-to-End Image Processing and Perception This repository contains the code for the paper Dirty Pixels: Towards End-to-End Imag

50 Nov 18, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
A set of tools for creating and testing machine learning features, with a scikit-learn compatible API

Feature Forge This library provides a set of tools that can be useful in many machine learning applications (classification, clustering, regression, e

Machinalis 380 Nov 05, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
Repository of Vision Transformer with Deformable Attention

Vision Transformer with Deformable Attention This repository contains the code for the paper Vision Transformer with Deformable Attention [arXiv]. Int

410 Jan 03, 2023