Scenic: A Jax Library for Computer Vision and Beyond

Overview

Scenic

Scenic is a codebase with a focus on research around attention-based models for computer vision. Scenic has been successfully used to develop classification, segmentation, and detection models for multiple modalities including images, video, audio, and multimodal combinations of them.

More precisely, Scenic is a (i) set of shared light-weight libraries solving tasks commonly encountered tasks when training large-scale (i.e. multi-device, multi-host) vision models; and (ii) a number of projects containing fully fleshed out problem-specific training and evaluation loops using these libraries.

Scenic is developed in JAX and uses Flax.

What we offer

Among others Scenic provides

  • Boilerplate code for launching experiments, summary writing, logging, profiling, etc;
  • Optimized training and evaluation loops, losses, metrics, bi-partite matchers, etc;
  • Input-pipelines for popular vision datasets;
  • Baseline models, including strong non-attentional baselines.

Papers using Scenic

Scenic can be used to reproduce the results from the following papers, which were either developed using Scenic, or have been reimplemented in Scenic:

Philosophy

Scenic aims to facilitate rapid prototyping of large-scale vision models. To keep the code simple to understand and extend we prefer forking and copy-pasting over adding complexity or increasing abstraction. Only when functionality proves to be widely useful across many models and tasks it may be upstreamed to Scenic's shared libraries.

Code structure

Shared libraries provided by Scenic are split into:

  • dataset_lib: Implements IO pipelines for loading and pre-processing data for common Computer Vision tasks and benchmarks. All pipelines are designed to be scalable and support multi-host and multi-device setups, taking care of dividing data among multiple hosts, incomplete batches, caching, pre-fetching, etc.
  • model_lib: Provides (i) several abstract model interfaces (e.g. ClassificationModel or SegmentationModel in model_lib.base_models) with task-specific losses and metrics; (ii) neural network layers in model_lib.layers, focusing on efficient implementation of attention and transfomer layers; and (iii) accelerator-friedly implementations of bipartite matching algorithms in model_lib.matchers.
  • train_lib: Provides tools for constructing training loops and implements several example trainers (classification trainer and segmentation trainer).
  • common_lib: Utilities that do not belong anywhere else.

Projects

Models built on top of Scenic exist as separate projects. Model-specific code such as configs, layers, losses, network architectures, or training and evaluation loops exist as separate projects.

Common baselines such as a ResNet or a Visual Transformer (ViT) are implemented in the projects/baselines project. Forking this directory is a good starting point for new projects.

There is no one-fits-all recipe for how much code should be re-used by projects. Projects can fall anywhere on the wide spectrum of code re-use: from defining new configs for an existing model to redefining models, training loop, logging, etc.

Getting started

  • See projects/baselines/README.md for a walk-through baseline models and instructions on how to run the code.
  • If you would like to to contribute to Scenic, please check out the Philisophy, Code structure and Contributing sections. Should your contribution be a part of the shared libraries, please send us a pull request!

Quick start

Download the code from GitHub

git clone https://github.com/google-research/scenic.git
cd scenic
pip install .

and run training for ViT on ImageNet:

python main.py -- \
  --config=projects/baselines/configs/imagenet/imagenet_vit_config.py \
  --workdir=./

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
This is a repository with the code for the ACL 2019 paper

The Story of Heads This is the official repo for the following papers: (ACL 2019) Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy

231 Nov 15, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
BMW TechOffice MUNICH 148 Dec 21, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

LLVM-based compiler for LightGBM gradient-boosted trees. Speeds up prediction by ≥10x.

Simon Boehm 183 Jan 02, 2023
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022