A collection of SOTA Image Classification Models in PyTorch

Overview

SOTA Image Classification Models in PyTorch

Intended for easy to use and integrate SOTA image classification models into object detection, semantic segmentation, pose estimation, etc.

Open In Colab

visiontransformer

Model Zoo

Model ImageNet-1k Top-1 Acc
(%)
Params
(M)
GFLOPs Variants & Weights
MicroNet 51.4|59.4|62.5 2|2|3 6M|12M|21M M1|M2|M3
MobileFormer 76.7|77.9|79.3 9|11|14 214M|294M|508M 214|294|508
GFNet 80.1|81.5|82.9 15|32|54 2|5|8 T|S|B
PVTv2 78.7|82.0|83.6 14|25|63 2|4|10 B1|B2|B4
ResT 79.6|81.6|83.6 14|30|52 2|4|8 S|B|L
Conformer 81.3|83.4|84.1 24|38|83 5|11|23 T|S|B
Shuffle 82.4|83.6|84.0 28|50|88 5|9|16 T|S|B
CSWin 82.7|83.6|84.2 23|35|78 4|7|15 T|S|B
CycleMLP 81.6|83.0|83.2 27|52|76 4|10|12 B2|B4|B5
HireMLP 81.8|83.1|83.4 33|58|96 4|8|14 S|B|L
sMLP 81.9|83.1|83.4 24|49|66 5|10|14 T|S|B
XCiT 80.4|83.9|84.3 12|48|84 2|9|16 T|S|M
VOLO 84.2|85.2|85.4 27|59|86 7|14|21 D1|D2|D3
Table Notes
  • Image size is 224x224. EfficientNetv2 uses progressive learning (image size from 128 to 380).
  • All models' weights are from official repositories.
  • Only models trained on ImageNet1k are compared.
  • (Parameters > 200M) Models are not included.
  • PVTv2, ResT, Conformer, XCiT and CycleMLP models work with any image size.

Usage

Requirements (click to expand)
  • python >= 3.6
  • torch >= 1.8.1
  • torchvision >= 0.9.1

Other requirements can be installed with pip install -r requirements.txt.


Show Available Models
$ python tools/show.py

A table with model names and variants will be shown:

Model Names    Model Variants
-------------  --------------------------------
ResNet         ['18', '34', '50', '101', '152']
MicroNet       ['M1', 'M2', 'M3']
GFNet          ['T', 'S', 'B']
PVTv2          ['B1', 'B2', 'B3', 'B4', 'B5']
ResT           ['S', 'B', 'L']
Conformer      ['T', 'S', 'B']
Shuffle        ['T', 'S', 'B']
CSWin          ['T', 'S', 'B', 'L']
CycleMLP       ['B1', 'B2', 'B3', 'B4', 'B5']
XciT           ['T', 'S', 'M', 'L']
VOLO           ['D1', 'D2', 'D3', 'D4']
Inference
  • Download your desired model's weights from Model Zoo table.
  • Change MODEL parameters and TEST parameters in config file here. And run the the following command.
$ python tools/infer.py --cfg configs/test.yaml

You will see an output similar to this:

File: assests\dog.jpg >>>>> Golden retriever

Training (click to expand)
$ python tools/train.py --cfg configs/train.yaml

Evaluate (click to expand)
$ python tools/val.py --cfg configs/train.yaml

Fine-tune (click to expand)

Fine-tune on CIFAR-10:

$ python tools/finetune.py --cfg configs/finetune.yaml

References (click to expand)

Citations (click to expand)
@article{zhql2021ResT,
  title={ResT: An Efficient Transformer for Visual Recognition},
  author={Zhang, Qinglong and Yang, Yubin},
  journal={arXiv preprint arXiv:2105.13677v3},
  year={2021}
}

@article{peng2021conformer,
  title={Conformer: Local Features Coupling Global Representations for Visual Recognition}, 
  author={Zhiliang Peng and Wei Huang and Shanzhi Gu and Lingxi Xie and Yaowei Wang and Jianbin Jiao and Qixiang Ye},
  journal={arXiv preprint arXiv:2105.03889},
  year={2021},
}

@misc{dong2021cswin,
  title={CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows}, 
  author={Xiaoyi Dong and Jianmin Bao and Dongdong Chen and Weiming Zhang and Nenghai Yu and Lu Yuan and Dong Chen and Baining Guo},
  year={2021},
  eprint={2107.00652},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{chen2021cyclemlp,
  title={CycleMLP: A MLP-like Architecture for Dense Prediction}, 
  author={Shoufa Chen and Enze Xie and Chongjian Ge and Ding Liang and Ping Luo},
  year={2021},
  eprint={2107.10224},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{wang2021pvtv2,
  title={PVTv2: Improved Baselines with Pyramid Vision Transformer}, 
  author={Wenhai Wang and Enze Xie and Xiang Li and Deng-Ping Fan and Kaitao Song and Ding Liang and Tong Lu and Ping Luo and Ling Shao},
  year={2021},
  eprint={2106.13797},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{elnouby2021xcit,
  title={XCiT: Cross-Covariance Image Transformers}, 
  author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
  year={2021},
  eprint={2106.09681},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yuan2021volo,
  title={VOLO: Vision Outlooker for Visual Recognition}, 
  author={Li Yuan and Qibin Hou and Zihang Jiang and Jiashi Feng and Shuicheng Yan},
  year={2021},
  eprint={2106.13112},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@misc{yan2020micronet,
  title={MicroNet for Efficient Language Modeling}, 
  author={Zhongxia Yan and Hanrui Wang and Demi Guo and Song Han},
  year={2020},
  eprint={2005.07877},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}

@misc{chen2021mobileformer,
  title={Mobile-Former: Bridging MobileNet and Transformer}, 
  author={Yinpeng Chen and Xiyang Dai and Dongdong Chen and Mengchen Liu and Xiaoyi Dong and Lu Yuan and Zicheng Liu},
  year={2021},
  eprint={2108.05895},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

@article{rao2021global,
  title={Global Filter Networks for Image Classification},
  author={Rao, Yongming and Zhao, Wenliang and Zhu, Zheng and Lu, Jiwen and Zhou, Jie},
  journal={arXiv preprint arXiv:2107.00645},
  year={2021}
}

@article{huang2021shuffle,
  title={Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer},
  author={Huang, Zilong and Ben, Youcheng and Luo, Guozhong and Cheng, Pei and Yu, Gang and Fu, Bin},
  journal={arXiv preprint arXiv:2106.03650},
  year={2021}
}

You might also like...
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

SOTA model in CIFAR10
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

A toolkit for document-level event extraction, containing some SOTA model implementations
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Collection of generative models in Pytorch version.
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer Implement face detection, and age and gender classification, and emotion classification.
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Releases(v0.2.0)
Owner
sithu3
AI Developer
sithu3
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
Improving Contrastive Learning by Visualizing Feature Transformation, ICCV 2021 Oral

Improving Contrastive Learning by Visualizing Feature Transformation This project hosts the codes, models and visualization tools for the paper: Impro

Bingchen Zhao 83 Dec 15, 2022
Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
Face Recognition plus identification simply and fast | Python

PyFaceDetection Face Recognition plus identification simply and fast Ubuntu Setup sudo pip3 install numpy sudo pip3 install cmake sudo pip3 install dl

Peyman Majidi Moein 16 Sep 22, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Single-Shot Motion Completion with Transformer

Single-Shot Motion Completion with Transformer 👉 [Preprint] 👈 Abstract Motion completion is a challenging and long-discussed problem, which is of gr

FuxiCV 78 Dec 29, 2022
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
A rule learning algorithm for the deduction of syndrome definitions from time series data.

README This project provides a rule learning algorithm for the deduction of syndrome definitions from time series data. Large parts of the algorithm a

0 Sep 24, 2021
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022