Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Overview

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks

Example 1 Example 2 Example 3

This repository contains the code that accompanies our CVPR 2021 paper Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks

You can find detailed usage instructions for training your own models and using our pretrained models below.

If you found this work influential or helpful for your research, please consider citing

@Inproceedings{Paschalidou2021CVPR,
     title = {Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks},
     author = {Paschalidou, Despoina and Katharopoulos, Angelos and Geiger, Andreas and Fidler, Sanja},
     booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
     year = {2021}
}

Installation & Dependencies

Our codebase has the following dependencies:

For the visualizations, we use simple-3dviz, which is our easy-to-use library for visualizing 3D data using Python and ModernGL and matplotlib for the colormaps. Note that simple-3dviz provides a lightweight and easy-to-use scene viewer using wxpython. If you wish you use our scripts for visualizing the reconstructed primitives, you will need to also install wxpython.

The simplest way to make sure that you have all dependencies in place is to use conda. You can create a conda environment called neural_parts using

conda env create -f environment.yaml
conda activate neural_parts

Next compile the extenstion modules. You can do this via

python setup.py build_ext --inplace
pip install -e .

Demo

Example Output Example Output

You can now test our code on various inputs. To this end, simply download some input samples together with our pretrained models on D-FAUAST humans, ShapeNet chairs and ShapeNet planes from here. Now extract the nerual_parts_demo.zip that you just downloaded in the demo folder. To run our demo on the D-FAUST humans simply run

python demo.py ../config/dfaust_6.yaml --we ../demo/model_dfaust_6 --model_tag 50027_jumping_jacks:00135 --camera_target='-0.030173788,-0.10342446,-0.0021887198' --camera_position='0.076685235,-0.14528269,1.2060229' --up='0,1,0' --with_rotating_camera

This script should create a folder demo/output, where the per-primitive meshes are stored as .obj files. Similarly, you can now also run the demo for the input airplane

python demo.py ../config/shapenet_5.yaml --we ../demo/model_planes_5 --model_tag 02691156:7b134f6573e7270fb0a79e28606cb167 --camera_target='-0.030173788,-0.10342446,-0.0021887198' --camera_position='0.076685235,-0.14528269,1.2060229' --up='0,1,0' --with_rotating_camera

Usage

As soon as you have installed all dependencies and have obtained the preprocessed data, you can now start training new models from scratch, evaluate our pre-trained models and visualize the recovered primitives using one of our pre-trained models.

Reconstruction

To generate meshes using a trained model, we provide the forward_pass.py and the visualize_predictions.py scripts. Their difference is that the first performs the forward pass and generates a per-primitive mesh that is saved as an .obj file. Similarly, the visualize_predictions.py script performs the forward pass and visualizes the predicted primitives using simple-3dviz. The forward_pass.py script is ideal for reconstructing inputs on a heeadless server and you can run it by executing

python forward_pass.py path_to_config_yaml path_to_output_dir --weight_file path_to_weight_file --model_tag MODEL_TAG

where the argument --weight_file specifies the path to a trained model and the argument --model_tag defines the model_tag of the input to be reconstructed.

To run the visualize_predictions.py script you need to run

python visualize_predictions.py path_to_config_yaml path_to_output_dir --weight_file path_to_weight_file --model_tag MODEL_TAG

Using this script, you can easily render the prediction into .png images or a .gif, as well as perform various animations by rotating the camera. Furthermore, you can also specify the camera position, the up vector and the camera target as well as visualize the target mesh together with the predicted primitives simply by adding the --mesh argument.

Evaluation

For evaluation of the models we provide the script evaluate.py. You can run it using:

python evaluate.py path_to_config_yaml path_to_output_dir

The script reconstructs the input and evaluates the generated meshes using a standardized protocol. For each input, the script generates a .npz file that contains the various metrics for that particular input. Note that this script can also be executed multiple times in order to speed up the evaluation process. For example, if you wish to run the evaluation on 6 nodes, you can simply run

for i in {1..6}; do python evaluate.py path_to_config_yaml path_to_output_dir & done
[1] 9489
[2] 9490
[3] 9491
[4] 9492
[5] 9493
[6] 9494

wait
Running code on cpu
Running code on cpu
Running code on cpu
Running code on cpu
Running code on cpu
Running code on cpu

Again the script generates a per-input file in the output directory with the computed metrics.

Training

Finally, to train a new network from scratch, we provide the train_network.py script. To execute this script, you need to specify the path to the configuration file you wish to use and the path to the output directory, where the trained models and the training statistics will be saved. Namely, to train a new model from scratch, you simply need to run

python train_network.py path_to_config_yaml path_to_output_dir

Note tha it is also possible to start from a previously trained model by specifying the --weight_file argument, which should contain the path to a previously trained model. Furthermore, by using the arguments --model_tag and --category_tag, you can also train your network on a particular model (e.g. a specific plane, car, human etc.) or a specific object category (e.g. planes, chairs etc.)

Note that, if you want to use the RAdam optimizer during training, you will have to also install to download and install the corresponding code from this repository.

License

Our code is released under the MIT license which practically allows anyone to do anything with it. MIT license found in the LICENSE file.

Relevant Research

Below we list some papers that are relevant to our work.

Ours:

  • Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image pdf,project-page
  • Superquadrics Revisited: Learning 3D Shape Parsing beyond Cuboids pdf,project-page

By Others:

  • Learning Shape Abstractions by Assembling Volumetric Primitives pdf
  • 3D-PRNN: Generating Shape Primitives with Recurrent Neural Networks pdf
  • Im2Struct: Recovering 3D Shape Structure From a Single RGB Image pdf
  • Learning shape templates with structured implicit functions pdf
  • CvxNet: Learnable Convex Decomposition pdf
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Fuse radar and camera for detection

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor This project hosts the code for implementing the SAF-FC

ChangShuo 18 Jan 01, 2023
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023