A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

Overview

PyPI version Build Status Downloads Downloads/Week License

matrixprofile-ts

matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keogh and Mueen research groups at UC-Riverside and the University of New Mexico. Current implementations include MASS, STMP, STAMP, STAMPI, STOMP, SCRIMP++, and FLUSS.

Read the Target blog post here.

Further academic description can be found here.

The PyPi page for matrixprofile-ts is here

Contents

Installation

Major releases of matrixprofile-ts are available on the Python Package Index:

pip install matrixprofile-ts

Details about each release can be found here.

Quick start

>>> from matrixprofile import *
>>> import numpy as np
>>> a = np.array([0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0])
>>> matrixProfile.stomp(a,4)
(array([0., 0., 0., 0., 0., 0., 0., 0., 0.]), array([4., 5., 6., 7., 0., 1., 2., 3., 0.]))

Note that SCRIMP++ is highly recommended for calculating the Matrix Profile due to its speed and anytime ability.

Examples

Jupyter notebooks containing various examples of how to use matrixprofile-ts can be found under docs/examples.

As a basic introduction, we can take a synthetic signal and use STOMP to calculate the corresponding Matrix Profile (this is the same synthetic signal as in the Golang Matrix Profile library). Code for this example can be found here

datamp

There are several items of note:

  • The Matrix Profile value jumps at each phase change. High Matrix Profile values are associated with "discords": time series behavior that hasn't been observed before.

  • Repeated patterns in the data (or "motifs") lead to low Matrix Profile values.

We can introduce an anomaly to the end of the time series and use STAMPI to detect it

datampanom

The Matrix Profile has spiked in value, highlighting the (potential) presence of a new behavior. Note that Matrix Profile anomaly detection capabilities will depend on the nature of the data, as well as the selected subquery length parameter. Like all good algorithms, it's important to try out different parameter values.

Algorithm Comparison

This section shows the matrix profile algorithms and the time it takes to compute them. It also discusses use cases on when to use one versus another. The timing comparison is based on the synthetic sample data set to show run time speed.

For a more comprehensive runtime comparison, please review the notebook docs/examples/Algorithm Comparison.ipynb.

All time comparisons were ran on a 4 core 2.8 ghz processor with 16 GB of memory. The operating system used was Ubuntu 18.04LTS 64 bit.

Algorithm Time to Complete Description
STAMP 310 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) STAMP is an anytime algorithm that lets you sample the data set to get an approximate solution. Our implementation provides you with the option to specify the sampling size in percent format.
STOMP 79.8 ms ± 473 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) STOMP computes an exact solution in a very efficient manner. When you have a historic time series that you would like to examine, STOMP is typically the quickest at giving an exact solution.
SCRIMP++ 59 ms ± 278 µs per loop (mean ± std. dev. of 7 runs, 10 loops each) SCRIMP++ merges the concepts of STAMP and STOMP together to provide an anytime algorithm that enables "interactive analysis speed". Essentially, it provides an exact or approximate solution in a very timely manner. Our implementation allows you to specify the max number of seconds you are willing to wait for a solution to obtain an approximate solution. If you are wanting the exact solution, it is able to provide that as well. The original authors of this algorithm suggest that SCRIMP++ can be used in all use cases.

Matrix Profile in Other Languages

Contact

Citations

  1. Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, Eamonn Keogh (2016). Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View that Includes Motifs, Discords and Shapelets. IEEE ICDM 2016

  2. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to break the one Hundred Million Barrier for Time Series Motifs and Joins. Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael Yeh, Gareth Funning, Abdullah Mueen, Philip Berisk and Eamonn Keogh (2016). EEE ICDM 2016

  3. Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery. Hoang Anh Dau and Eamonn Keogh. KDD'17, Halifax, Canada.

  4. Matrix Profile XI: SCRIMP++: Time Series Motif Discovery at Interactive Speed. Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar and Eamonn Keogh, ICDM 2018.

  5. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Liudmila Ulanova, and Eamonn Keogh. ICDM 2017.

Owner
Target
Target's official GitHub organization
Target
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Primitives for machine learning and data science.

An Open Source Project from the Data to AI Lab, at MIT MLPrimitives Pipelines and primitives for machine learning and data science. Documentation: htt

MLBazaar 65 Dec 29, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
A data preprocessing package for time series data. Design for machine learning and deep learning.

A data preprocessing package for time series data. Design for machine learning and deep learning.

Allen Chiang 152 Jan 07, 2023
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

ml4h is a toolkit for machine learning on clinical data of all kinds including genetics, labs, imaging, clinical notes, and more

Broad Institute 65 Dec 20, 2022