Simple (but Strong) Baselines for POMDPs

Overview

Recurrent Model-Free RL is a Strong Baseline for Many POMDPs

Welcome to the POMDP world! This repo provides some simple baselines for POMDPs, specifically the recurrent model-free RL, for the following paper

Paper: arXiv Numeric Results: google drive

by Tianwei Ni, Benjamin Eysenbach and Ruslan Salakhutdinov.

Installation

First download this repo into your local directory (preferably on a cluster or a server) <local_path>. Then we recommend to use a virtual env to install all the dependencies. For example, we install using miniconda:

conda env create -f install.yml
conda activate pomdp

The yaml file includes all the dependencies (e.g. PyTorch, PyBullet) used in our experiments (including compared methods), but there are two exceptions:

  • To run Cheetah-Vel in meta RL, you have to install MuJoCo with a license
  • To run robust RL and generalization in RL experiments, you have to install roboschool.
    • We found it hard to install roboschool from scratch, therefore we provide a docker file roboschool.sif in google drive that contains roboschool and the other necessary libraries, adapted from SunBlaze repo.
    • To download and activate the docker file by singularity on a cluster (on a single server should be similar):
    # download roboschool.sif from the google drive to envs/rl-generalization/roboschool.sif
    # then run singularity shell
    singularity shell --nv -H <local_path>:/home envs/rl-generalization/roboschool.sif
    • Then you can test it by import roboschool in a python3 shell.

General Form to Run Our Implementation of Recurrent Model-Free RL and Compared Methods

Basically, we use .yml file in configs/ folder for each subarea of POMDPs. To run our implementation, in <local_path> simply use

export PYTHONPATH=${PWD}:$PYTHONPATH
python3 policies/main.py configs/<subarea>/<env_name>/<algo_name>.yml

where algo_name specifies the algorithm name:

  • sac_rnn and td3_rnn correspond to our implementation of recurrent model-free RL
  • ppo_rnn and a2c_rnn correspond to (Kostrikov, 2018) implementation of recurrent model-free RL
  • vrm corresponds to VRM compared in "standard" POMDPs
  • varibad corresponds the off-policy version of original VariBAD compared in meta RL
  • MRPO correspond to MRPO compared in robust RL

We have merged the prior methods above into our repository (there is no need to install other repositories), so that future work can use this single repository to run a number of baselines besides ours: A2C-GRU, PPO-GRU, VRM, VariBAD, MRPO. Since our code is heavily drawn from those prior works, we encourage authors to cite those prior papers or implementations. For the compared methods, we use their open-sourced implementation with their default hyperparameters.

Specific Running Commands for Each Subarea

Please see run_commands.md for details on running our implementation of recurrent model-free RL and also all the compared methods.

A Minimal Example to Run Our Implementation

Here we provide a stand-alone minimal example with the least dependencies to run our implementation of recurrent model-free RL!

Only requires PyTorch and PyBullet, no need to install MuJoCo or roboschool, no external configuration file.

Simply open the Jupyter Notebook example.ipynb and it contains the training and evaluation procedure on a toy POMDP environment (Pendulum-V). It only costs < 20 min to run the whole process.

Details of Our Implementation of Recurrent Model-Free RL: Decision Factors, Best Variants, Code Features

Please see our_details.md for more information on:

  • How to tune the decision factors discussed in the paper in the configuration files
  • How to tune the other hyperparameters that are also important to training
  • Where is the core class of our recurrent model-free RL and the RAM-efficient replay buffer
  • Our best variants in subarea and numeric results on all the bar charts and learning curves

Acknowledgement

Please see acknowledge.md for details.

Citation

If you find our code useful to your work, please consider citing our paper:

@article{ni2021recurrentrl,
  title={Recurrent Model-Free RL is a Strong Baseline for Many POMDPs},
  author={Ni, Tianwei and Eysenbach, Benjamin and Salakhutdinov, Ruslan},
  year={2021}
}

Contact

If you have any questions, please create an issue in this repo or contact Tianwei Ni ([email protected])

Owner
Tianwei V. Ni
Efficient coding excites me. Good research surprises me.
Tianwei V. Ni
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Google_Landmark_Retrieval_2021_2nd_Place_Solution The 2nd place solution of 2021 google landmark retrieval on kaggle. Environment We use cuda 11.1/pyt

229 Dec 13, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Simon Blanke 422 Jan 04, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022