[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

Overview

DeepDeform (CVPR'2020)

DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow images and 4,479 foreground object masks. We also provide 149,228 sparse match annotations and 63,512 occlusion point annotations.

Download Data

If you would like to download the DeepDeform data, please fill out this google form and, once accepted, we will send you the link to download the data.

Online Benchmark

If you want to participate in the benchmark(s), you can submit your results at DeepDeform Benchmark website.

Currently we provide benchmarks for the following tasks:

By uploading your results on the test set to the DeepDeform Benchmark website the performance of you method is automatically evaluated on the hidden test labels, and compared to other already evaluated methods. You can decide if you want to make the evaluation results public or not.

If you want to evaluate on validation set, we provide code that is used for evaluation of specific benchmarks in directory evaluation/. To evaluate optical flow or non-rigid reconstruction, you need to adapt FLOW_RESULTS_DIR or RECONSTRUCTION_RESULTS_DIR in config.py to correspond to your results directory (that would be in the same format as for the online submission, described here).

In order to evaluate reconstruction, you need to compile additional C++ modules.

  • Install necessary dependencies:
pip install pybind11
pip install Pillow
pip install plyfile
pip install tqdm
pip install scikit-image
  • Inside the evaluation/csrc adapt includes.py to point to your Eigen include directory.

  • Compile the code by executing the following in evaluation/csrc:

python setup.py install

Data Organization

Data is organized into 3 subsets, train, val, and test directories, using 340-30-30 sequence split. In every subset each RGB-D sequence is stored in a directory <sequence_id>, which follows the following format:

<sequence_id>
|-- <color>: color images for every frame (`%06d.jpg`)
|-- <depth>: depth images for every frame (`%06d.png`)
|-- <mask>: mask images for a few frames (`%06d.png`)
|-- <optical_flow>: optical flow images for a few frame pairs (`<object_id>_<source_id>_<target_id>.oflow` or `%s_%06d_%06d.oflow`)
|-- <scene_flow>: scene flow images for a few frame pairs (`<object_id>_<source_id>_<target_id>.sflow` or `%s_%06d_%06d.sflow`)
|-- <intrinsics.txt>: 4x4 intrinsics matrix

All labels are provided in .json files in root dataset r directory:

  • train_matches.json and val_matches.json:
    Manually annotated sparse matches.
  • train_dense.json and val_dense.json:
    Densely aligned optical and scene flow images with the use of sparse matches as a guidance.
  • train_selfsupervised.json and val_selfsupervised.json:
    Densely aligned optical and scene flow images using self-supervision (DynamicFusion pipeline) for a few sequences. - train_selfsupervised.json and `val_skaldir
  • train_masks.json and val_masks.json:
    Dynamic object annotations for a few frames per sequence.
  • train_occlusions.json and val_occlusions.json:
    Manually annotated sparse occlusions.

Data Formats

We recommend you to test out scripts in demo/ directory in order to check out loading of different file types.

RGB-D Data: 3D data is provided as RGB-D video sequences, where color and depth images are already aligned. Color images are provided as 8-bit RGB .jpg, and depth images as 16-bit .png (divide by 1000 to obtain depth in meters).

Camera Parameters: A 4x4 intrinsic matrix is given for every sequence (because different cameras were used for data capture, every sequence can have different intrinsic matrix). Since the color and depth images are aligned, no extrinsic transformation is necessary.

Optical Flow Data: Dense optical flow data is provided as custom binary image of resolution 640x480 with extension .oflow. Every pixel contains two values for flow in x and y direction, in pixels. Helper function to load/store binary flow images is provided in utils.py.

Scene Flow Data: Dense scene flow data is provided as custom binary image of resolution 640x480 with extension .sflow. Every pixel contains 3 values for flow in x, y and z direction, in meters. Helper function to load/store binary flow images is provided in utils.py.

Object Mask Data: A few frames per sequences also include foreground dynamic object annotation. The mask image is given as 16-bit .png image (1 for object, 0 for background).

Sparse Match Annotations: We provide manual sparse match annotations for a few frame pairs for every sequence. They are stored in .json format, with paths to corresponding source and target RGB-D frames, as a list of source and target pixels.

Sparse Occlusion Annotations: We provide manual sparse occlusion annotations for a few frame pairs for every sequence. They are stored in .json format, with paths to corresponding source and target RGB-D frames, as a list of occluded pixels in source frame.

Citation

If you use DeepDeform data or code please cite:

@inproceedings{bozic2020deepdeform, 
    title={DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data}, 
    author={Bo{\v{z}}i{\v{c}}, Alja{\v{z}} and Zollh{\"o}fer, Michael and Theobalt, Christian and Nie{\ss}ner, Matthias}, 
    journal={Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year={2020}
}

Help

If you have any questions, please contact us at [email protected], or open an issue at Github.

License

The data is released under DeepDeform Terms of Use, and the code is release under a non-comercial creative commons license.

Owner
Aljaz Bozic
PhD Student at Visual Computing Group
Aljaz Bozic
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
NEG loss implemented in pytorch

Pytorch Negative Sampling Loss Negative Sampling Loss implemented in PyTorch. Usage neg_loss = NEG_loss(num_classes, embedding_size) optimizer =

Daniil Gavrilov 123 Sep 13, 2022
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
Application of the L2HMC algorithm to simulations in lattice QCD.

l2hmc-qcd 📊 Slides Recent talk on Training Topological Samplers for Lattice Gauge Theory from the Machine Learning for High Energy Physics, on and of

Sam Foreman 37 Dec 14, 2022