Source code of "Hold me tight! Influence of discriminative features on deep network boundaries"

Overview

Hold me tight! Influence of discriminative features on deep network boundaries

This is the source code to reproduce the experiments of the NeurIPS 2020 paper "Hold me tight! Influence of discriminative features on deep network boundaries" by Guillermo Ortiz-Jimenez*, Apostolos Modas*, Seyed-Mohsen Moosavi-Dezfooli and Pascal Frossard.

Abstract

Important insights towards the explainability of neural networks reside in the characteristics of their decision boundaries. In this work, we borrow tools from the field of adversarial robustness, and propose a new perspective that relates dataset features to the distance of samples to the decision boundary. This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets. We use this framework to reveal some intriguing properties of CNNs. Specifically, we rigorously confirm that neural networks exhibit a high invariance to non-discriminative features, and show that very small perturbations of the training samples in certain directions can lead to sudden invariances in the orthogonal ones. This is precisely the mechanism that adversarial training uses to achieve robustness.

Dependencies

To run our code on a Linux machine with a GPU, install the Python packages in a fresh Anaconda environment:

$ conda env create -f environment.yml
$ conda activate hold_me_tight

Experiments

This repository contains code to reproduce the following experiments:

You can reproduce this experiments separately using their individual scripts, or have a look at the comprehensive Jupyter notebook.

Pretrained architectures

We also provide a set of pretrained models that we used in our experiments. The exact hyperparameters and settings can be found in the Supplementary material of the paper. All the models are publicly available and can be downloaded from here. In order to execute the scripts using the pretrained models, it is recommended to download them and save them under the Models/Pretrained/ directory.

Architecture Dataset Training method
LeNet MNIST Standard
ResNet18 MNIST Standard
ResNet18 CIFAR10 Standard
VGG19 CIFAR10 Standard
DenseNet121 CIFAR10 Standard
LeNet Flipped MNIST Standard + Frequency flip
ResNet18 Flipped MNIST Standard + Frequency flip
ResNet18 Flipped CIFAR10 Standard + Frequency flip
VGG19 Flipped CIFAR10 Standard + Frequency flip
DenseNet121 Flipped CIFAR10 Standard + Frequency flip
ResNet50 Flipped ImageNet Standard + Frequency flip
ResNet18 Low-pass CIFAR10 Standard + Low-pass filtering
VGG19 Low-pass CIFAR10 Standard + Low-pass filtering
DenseNet121 Low-pass CIFAR10 Standard + Low-pass filtering
Robust LeNet MNIST L2 PGD adversarial training (eps = 2)
Robust ResNet18 MNIST L2 PGD adversarial training (eps = 2)
Robust ResNet18 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust VGG19 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust DenseNet121 CIFAR10 L2 PGD adversarial training (eps = 1)
Robust ResNet50 ImageNet L2 PGD adversarial training (eps = 3) (copied from here)
Robust LeNet Flipped MNIST L2 PGD adversarial training (eps = 2) with Dykstra projection + Frequency flip
Robust ResNet18 Flipped MNIST L2 PGD adversarial training (eps = 2) with Dykstra projection + Frequency flip
Robust ResNet18 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip
Robust VGG19 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip
Robust DenseNet121 Flipped CIFAR10 L2 PGD adversarial training (eps = 1) with Dykstra projection + Frequency flip

Reference

If you use this code, or some of the attached models, please cite the following paper:

@InCollection{OrtizModasHMT2020,
  TITLE = {{Hold me tight! Influence of discriminative features on deep network boundaries}},
  AUTHOR = {{Ortiz-Jimenez}, Guillermo and {Modas}, Apostolos and {Moosavi-Dezfooli}, Seyed-Mohsen and Frossard, Pascal},
  BOOKTITLE = {Advances in Neural Information Processing Systems 34},
  MONTH = dec,
  YEAR = {2020}
}
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
SimpleDepthEstimation - An unified codebase for NN-based monocular depth estimation methods

SimpleDepthEstimation Introduction This is an unified codebase for NN-based monocular depth estimation methods, the framework is based on detectron2 (

8 Dec 13, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023