A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

Overview

banner-logo


COMPOTE: Calibration Of Multi-focus PlenOpTic camEra.

COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

Quick Start

Pre-requisites

The COMPOTE applications have a light dependency list:

  • boost version 1.54 and up, portable C++ source libraries,
  • libpleno, an open-souce C++ library for plenoptic camera,

and was compiled and tested on:

  • Ubuntu 18.04.4 LTS, GCC 7.5.0, with Eigen 3.3.4, Boost 1.65.1, and OpenCV 3.2.0.

Compilation & Test

If you are comfortable with Linux and CMake and have already installed the prerequisites above, the following commands should compile the applications on your system.

mkdir build && cd build
cmake ..
make -j6

To test the calibrate application you can use the example script from the build directory:

./../example/run_calibration.sh

Applications

Configuration

All applications use .js (json) configuration file. The path to this configuration files are given in the command line using boost program options interface.

Options:

short long default description
-h --help Print help messages
-g --gui true Enable GUI (image viewers, etc.)
-v --verbose true Enable output with extra information
-l --level ALL (15) Select level of output to print (can be combined): NONE=0, ERR=1, WARN=2, INFO=4, DEBUG=8, ALL=15
-i --pimages Path to images configuration file
-c --pcamera Path to camera configuration file
-p --pparams "internals.js" Path to camera internal parameters configuration file
-s --pscene Path to scene configuration file
-f --features "observations.bin.gz" Path to observations file
-e --extrinsics "extrinsics.js" Path to save extrinsics parameters file
-o --output "intrinsics.js" Path to save intrinsics parameters file

For instance to run calibration:

./calibrate -i images.js -c camera.js -p params.js -f observations.bin.gz -s scene.js -g true -l 7

Configuration file examples are given for the dataset R12-A in the folder examples/.

Pre-calibration

precalibrate uses whites raw images taken at different aperture to calibrate the Micro-Images Array (MIA) and computes the internal parameters used to initialize the camera and to detect the Blur Aware Plenoptic (BAP) features.

Requirements: minimal camera configuration, white images. Output: radii statistics (.csv), internal parameters, initial camera parameters.

Features Detection

detect extracts the newly introduced Blur Aware Plenoptic (BAP) features in checkerboard images.

Requirements: calibrated MIA, internal parameters, checkerboard images, and scene configuration. Output: micro-image centers and BAP features.

Camera Calibration

calibrate runs the calibration of the plenoptic camera (set I=0 to act as pinholes array, or I>0 for multifocus case). It generates the intrinsics and extrinsics parameters.

Requirements: calibrated MIA, internal parameters, features and scene configuration. If none are given all steps are re-done. Output: error statistics, calibrated camera parameters, camera poses.

Extrinsics Estimation & Calibration Evaluation

extrinsics runs the optimization of extrinsics parameters given a calibrated camera and generates the poses.

Requirements: internal parameters, features, calibrated camera and scene configuration. Output: error statistics, estimated poses.

COMPOTE also provides two applications to run stats evaluation on the optimized poses optained with a constant step linear translation along the z-axis:

  • linear_evaluation gives the absolute errors (mean + std) and the relative errors (mean + std) of translation of the optimized poses,
  • linear_raytrix_evaluation takes .xyz pointcloud obtained by Raytrix calibration software and gives the absolute errors (mean + std) and the relative errors (mean + std) of translation.

Note: those apps are legacy and have been moved and generalized in the [BLADE] app's evaluate.

Blur Proportionality Coefficient Calibration

blurcalib runs the calibration of the blur proportionality coefficient kappa linking the spread parameter of the PSF with the blur radius. It updates the internal parameters with the optimized value of kappa.

Requirements: internal parameters, features and images. Output: internal parameters.

Datasets

Datasets R12-A, R12-B and R12-C can be downloaded from here. The dataset R12-D, and the simulated unfocused plenoptic camera dataset UPC-S are also available from here.

Citing

If you use COMPOTE or libpleno in an academic context, please cite the following publication:

@inproceedings{labussiere2020blur,
  title 	=	{Blur Aware Calibration of Multi-Focus Plenoptic Camera},
  author	=	{Labussi{\`e}re, Mathieu and Teuli{\`e}re, C{\'e}line and Bernardin, Fr{\'e}d{\'e}ric and Ait-Aider, Omar},
  booktitle	=	{Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages		=	{2545--2554},
  year		=	{2020}
}

License

COMPOTE is licensed under the GNU General Public License v3.0. Enjoy!


Owner
ComSEE - Computers that SEE
Computer Vision research team of the Image, Systems of Perception and Robotics (ISPR) department of the Institut Pascal.
ComSEE - Computers that SEE
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Generate indoor scenes with Transformers

SceneFormer: Indoor Scene Generation with Transformers Initial code release for the Sceneformer paper, contains models, train and test scripts for the

Chandan Yeshwanth 110 Dec 06, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Training a deep learning model on the noisy CIFAR dataset

Training-a-deep-learning-model-on-the-noisy-CIFAR-dataset This repository contai

1 Jun 14, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
Code for the paper "Offline Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Offline Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are

Michael Janner 266 Dec 27, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021