A Lightweight Experiment & Resource Monitoring Tool 📺

Overview

Lightweight Experiment & Resource Monitoring 📺

Pyversions PyPI version Code style: black Colab codecov

"Did I already run this experiment before? How many resources are currently available on my cluster?" If these are common questions you encounter during your daily life as a researcher, then mle-monitor is made for you. It provides a lightweight API for tracking your experiments using a pickle protocol database (e.g. for hyperparameter searches and/or multi-configuration/multi-seed runs). Furthermore, it comes with built-in resource monitoring on Slurm/Grid Engine clusters and local machines/servers.

mle-monitor provides three core functionalities:

  • MLEProtocol: A composable protocol database API for ML experiments.
  • MLEResource: A tool for obtaining server/cluster usage statistics.
  • MLEDashboard: A dashboard visualizing resource usage & experiment protocol.

To get started I recommend checking out the colab notebook and an example workflow.

drawing

MLEProtocol: Keeping Track of Your Experiments 📝

from mle_monitor import MLEProtocol

# Load protocol database or create new one -> print summary
protocol_db = MLEProtocol("mle_protocol.db", verbose=False)
protocol_db.summary(tail=10, verbose=True)

# Draft data to store in protocol & add it to the protocol
meta_data = {
    "purpose": "Grid search",  # Purpose of experiment
    "project_name": "MNIST",  # Project name of experiment
    "experiment_type": "hyperparameter-search",  # Type of experiment
    "experiment_dir": "experiments/logs",  # Experiment directory
    "num_total_jobs": 10,  # Number of total jobs to run
    ...
}
new_experiment_id = protocol_db.add(meta_data)

# ... train your 10 (pseudo) networks/complete respective jobs
for i in range(10):
    protocol_db.update_progress_bar(new_experiment_id)

# Wrap up an experiment (store completion time, etc.)
protocol_db.complete(new_experiment_id)

The meta data can contain the following keys:

Search Type Description Default
purpose Purpose of experiment 'None provided'
project_name Project name of experiment 'default'
exec_resource Resource jobs are run on 'local'
experiment_dir Experiment log storage directory 'experiments'
experiment_type Type of experiment to run 'single'
base_fname Main code script to execute 'main.py'
config_fname Config file path of experiment 'base_config.yaml'
num_seeds Number of evaluations seeds 1
num_total_jobs Number of total jobs to run 1
num_job_batches Number of jobs in single batch 1
num_jobs_per_batch Number of sequential job batches 1
time_per_job Expected duration: days-hours-minutes '00:01:00'
num_cpus Number of CPUs used in job 1
num_gpus Number of GPUs used in job 0

Additionally you can synchronize the protocol with a Google Cloud Storage (GCS) bucket by providing cloud_settings. In this case also the results stored in experiment_dir will be uploaded to the GCS bucket, when you call protocol.complete().

# Define GCS settings - requires 'GOOGLE_APPLICATION_CREDENTIALS' env var.
cloud_settings = {
    "project_name": "mle-toolbox",  # GCP project name
    "bucket_name": "mle-protocol",  # GCS bucket name
    "use_protocol_sync": True,  # Whether to sync the protocol to GCS
    "use_results_storage": True,  # Whether to sync experiment_dir to GCS
}
protocol_db = MLEProtocol("mle_protocol.db", cloud_settings, verbose=True)

The MLEResource: Keeping Track of Your Resources 📉

On Your Local Machine

from mle_monitor import MLEResource

# Instantiate local resource and get usage data
resource = MLEResource(resource_name="local")
resource_data = resource.monitor()

On a Slurm Cluster

resource = MLEResource(
    resource_name="slurm-cluster",
    monitor_config={"partitions": ["<partition-1>", "<partition-2>"]},
)

On a Grid Engine Cluster

resource = MLEResource(
    resource_name="sge-cluster",
    monitor_config={"queues": ["<queue-1>", "<queue-2>"]}
)

The MLEDashboard: Dashboard Visualization 🎞️

from mle_monitor import MLEDashboard

# Instantiate dashboard with protocol and resource
dashboard = MLEDashboard(protocol, resource)

# Get a static snapshot of the protocol & resource utilisation printed in console
dashboard.snapshot()

# Run monitoring in while loop - dashboard
dashboard.live()

Installation

A PyPI installation is available via:

pip install mle-monitor

Alternatively, you can clone this repository and afterwards 'manually' install it:

git clone https://github.com/mle-infrastructure/mle-monitor.git
cd mle-monitor
pip install -e .

Development & Milestones for Next Release

You can run the test suite via python -m pytest -vv tests/. If you find a bug or are missing your favourite feature, feel free to contact me @RobertTLange or create an issue 🤗 .

You might also like...
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

Punctuation Restoration using Transformer Models for High-and Low-Resource Languages
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Real-Time Social Distance Monitoring tool using Computer Vision
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

Attendance Monitoring with Face Recognition using Python
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Comments
  • Is the dashboard pooling squeue?

    Is the dashboard pooling squeue?

    Hey, Thanks for publishing the library, the dashboard looks great!

    However, I was a bit concerned to see you are using squeue since the official documentation says

    "Executing squeue sends a remote procedure call to slurmctld. If enough calls from squeue or other Slurm client commands that send remote procedure calls to the slurmctld daemon come in at once, it can result in a degradation of performance of the slurmctld daemon, possibly resulting in a denial of service.

    Do not run squeue or other Slurm client commands that send remote procedure calls to slurmctld from loops in shell scripts or other programs. Ensure that programs limit calls to squeue to the minimum necessary for the information you are trying to gather."

    Do you poll squeue or is there some other, smarter management of it that I missed?

    Thanks, Eliahu

    opened by eliahuhorwitz 0
Releases(v0.0.1)
  • v0.0.1(Dec 9, 2021)

    Basic API for MLEProtocol, MLEResource & MLEDashboard:

    from mle_monitor import MLEProtocol
    
    # Load protocol database or create new one -> print summary
    protocol_db = MLEProtocol("mle_protocol.db", verbose=False)
    protocol_db.summary(tail=10, verbose=True)
    
    # Draft data to store in protocol & add it to the protocol
    meta_data = {
        "purpose": "Grid search",  # Purpose of experiment
        "project_name": "MNIST",  # Project name of experiment
        "experiment_type": "hyperparameter-search",  # Type of experiment
        "experiment_dir": "experiments/logs",  # Experiment directory
        "num_total_jobs": 10,  # Number of total jobs to run
        ...
    }
    new_experiment_id = protocol_db.add(meta_data)
    
    # ... train your 10 (pseudo) networks/complete respective jobs
    for i in range(10):
        protocol_db.update_progress_bar(new_experiment_id)
    
    # Wrap up an experiment (store completion time, etc.)
    protocol_db.complete(new_experiment_id)
    
    Source code(tar.gz)
    Source code(zip)
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of Coordinate Independent Convolutional Networks.

Orientation independent Möbius CNNs This repository implements and evaluates convolutional networks on the Möbius strip as toy model instantiations of

Maurice Weiler 59 Dec 09, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
STRIVE: Scene Text Replacement In Videos

STRIVE: Scene Text Replacement In Videos Dataset Types: RoboText SynthText RealWorld videos RoboText : Videos of texts collected using navigation robo

15 Jul 11, 2022
competitions-v2

Codabench (formerly Codalab Competitions v2) Installation $ cp .env_sample .env $ docker-compose up -d $ docker-compose exec django ./manage.py migrat

CodaLab 21 Dec 02, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
This implements one of result networks from Large-scale evolution of image classifiers

Exotic structured image classifier This implements one of result networks from Large-scale evolution of image classifiers by Esteban Real, et. al. Req

54 Nov 25, 2022